Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 204(1): 147-159, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38151651

ABSTRACT

Functional trait ecology has the potential to provide generalizable and mechanistic predictions of ecosystem function from data of species distributions and traits. The traits that are selected should both respond to environmental factors and influence ecosystem functioning. Invertebrate mouthpart traits fulfill these criteria, but are seldom collected, lack standardized measurement protocols, and have infrequently been investigated in response to environmental factors. We surveyed isopod species that consume plant detritus, and tree communities in 58 plots across primary and secondary forests in Singapore. We measured body dimensions (body size traits), pereopod and antennae lengths (locomotory traits), dimensions of mandible structures (morphological mouthpart traits), and mechanical advantages generated by mandible shape (mechanical mouthpart traits) for six isopod species found in these plots and investigated if these traits respond to changes in tree community composition, tree diversity, and forest structure. Morphological mouthpart traits responded to a tree compositional gradient reflecting forest recovery degree. Mouthpart features associated with greater consumption of litter (broader but less serrated/rugose lacinia mobilis [an important cutting and chewing structure on the mandible]) were most prevalent in abandoned plantation and young secondary forests containing disturbance-associated tree species. Feeding strategies associated with fungi grazing (narrower and more serrated/rugose lacinia mobilis) were most prevalent in late secondary forests containing later successional tree species. Since morphological mouthpart traits likely also predict consumption and excretion rates of isopods, these traits advance our understanding of environment-trait-ecosystem functioning relationships across contrasting tropical forest plots that vary in composition, disturbance history, and post-disturbance recovery.


Subject(s)
Ecosystem , Isopoda , Animals , Tropical Climate , Ecology , Plants
2.
Nat Commun ; 11(1): 4721, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948775

ABSTRACT

The importance of soil age as an ecosystem driver across biomes remains largely unresolved. By combining a cross-biome global field survey, including data for 32 soil, plant, and microbial properties in 16 soil chronosequences, with a global meta-analysis, we show that soil age is a significant ecosystem driver, but only accounts for a relatively small proportion of the cross-biome variation in multiple ecosystem properties. Parent material, climate, vegetation and topography predict, collectively, 24 times more variation in ecosystem properties than soil age alone. Soil age is an important local-scale ecosystem driver; however, environmental context, rather than soil age, determines the rates and trajectories of ecosystem development in structure and function across biomes. Our work provides insights into the natural history of terrestrial ecosystems. We propose that, regardless of soil age, changes in the environmental context, such as those associated with global climatic and land-use changes, will have important long-term impacts on the structure and function of terrestrial ecosystems across biomes.


Subject(s)
Biota , Ecosystem , Soil/chemistry , Bacteria/classification , Biodiversity , Biomass , Climate , Fungi/classification , Microbiota , Plants/classification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...