Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1918, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024503

ABSTRACT

Parkinson's Disease (PD) is a common neurodegenerative disorder affecting millions of people worldwide for which there are only symptomatic therapies. Small molecules able to target key pathological processes in PD have emerged as interesting options for modifying disease progression. We have previously shown that a (poly)phenol-enriched fraction (PEF) of Corema album L. leaf extract modulates central events in PD pathogenesis, namely α-synuclein (αSyn) toxicity, aggregation and clearance. PEF was now subjected to a bio-guided fractionation with the aim of identifying the critical bioactive compound. We identified genipin, an iridoid, which relieves αSyn toxicity and aggregation. Furthermore, genipin promotes metabolic alterations and modulates lipid storage and endocytosis. Importantly, genipin was able to prevent the motor deficits caused by the overexpression of αSyn in a Drosophila melanogaster model of PD. These findings widens the possibility for the exploitation of genipin for PD therapeutics.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , Drosophila melanogaster/metabolism , Parkinson Disease/metabolism , Iridoids/pharmacology , Phenols , Lipids
2.
J Exp Zool B Mol Dev Evol ; 340(3): 270-276, 2023 05.
Article in English | MEDLINE | ID: mdl-35676886

ABSTRACT

For centuries, it has been understood that the final size of adult holometabolous insects is determined by the end of the larval stage, and that once they transform to adults, holometabolous insects do not grow. Despite this, no previous study has directly tested these "old truths" across holometabolous insects. Here, we demonstrate that final adult size is set at the end of the last larval stage in species representing each of the four orders of holometabolous insects: the fruit fly Drosophila melanogaster (Diptera), the tobacco hornworm Manduca sexta (Lepidoptera), the dung beetle Onthophagus taurus (Coleoptera), and the Florida carpenter ant Camponotus floridanus (Hymenoptera). Furthermore, in both D. melanogaster and C. floridanus, we show that the size of adult individuals fluctuates but does not significantly change. Therefore, our study finally confirms these two basic assumptions in the biology of insects, which have for centuries served as the foundation for studies of insect growth, size, and allometry.


Subject(s)
Body Size , Insecta , Animals , Ants , Drosophila melanogaster , Insecta/growth & development , Larva , Manduca
3.
J Insect Physiol ; 139: 104051, 2022.
Article in English | MEDLINE | ID: mdl-32229143

ABSTRACT

Adult body size is determined by the quality and quantity of nutrients available to animals. In insects, nutrition affects adult size primarily during the nymphal or larval stages. However, measures of adult size like body weight are likely to also change with adult nutrition. In this study, we sought to explore the roles of nutrition throughout the life cycle on adult body weight and the size of two appendages, the wing and the femur, in the fruit fly Drosophila melanogaster. We manipulated nutrition in two ways: by varying the protein to carbohydrate content of the diet, called macronutrient restriction, and by changing the caloric density of the diet, termed caloric restriction. We employed a fully factorial design to manipulate both the larval and adult diets for both diet types. We found that manipulating the larval diet had greater impacts on all measures of adult size. Further, macronutrient restriction was more detrimental to adult size than caloric restriction. For adult body weight, a rich adult diet mitigated the negative effects of poor larval nutrition for both types of diets. In contrast, small wing and femur size caused by poor larval diet could not be increased with the adult diet. Taken together, these results suggest that appendage size is fixed by the larval diet, while those related to body composition remain sensitive to adult diet. Further, our studies provide a foundation for understanding how the nutritional environment of juveniles affects how adults respond to diet.


Subject(s)
Animal Nutritional Physiological Phenomena , Drosophila melanogaster , Animals , Body Weight , Diet , Drosophila melanogaster/physiology , Larva/physiology
4.
Brain Commun ; 3(2): fcab049, 2021.
Article in English | MEDLINE | ID: mdl-33997781

ABSTRACT

Alpha-synuclein (α-syn) mislocalization and accumulation in intracellular inclusions is the major pathological hallmark of degenerative synucleinopathies, including Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies. Typical symptoms are behavioural abnormalities including motor deficits that mark disease progression, while non-motor symptoms and synaptic deficits are already apparent during the early stages of disease. Synucleinopathies have therefore been considered synaptopathies that exhibit synaptic dysfunction prior to neurodegeneration. However, the mechanisms and events underlying synaptopathy are largely unknown. Here we investigated the cascade of pathological events underlying α-syn accumulation and toxicity in a Drosophila model of synucleinopathy by employing a combination of histological, biochemical, behavioural and electrophysiological assays. Our findings demonstrate that targeted expression of human α-syn leads to its accumulation in presynaptic terminals that caused downregulation of synaptic proteins, cysteine string protein, synapsin, and syntaxin 1A, and a reduction in the number of Bruchpilot puncta, the core component of the presynaptic active zone essential for its structural integrity and function. These α-syn-mediated presynaptic alterations resulted in impaired neuronal function, which triggered behavioural deficits in ageing Drosophila that occurred prior to progressive degeneration of dopaminergic neurons. Comparable alterations in presynaptic active zone protein were found in patient brain samples of dementia with Lewy bodies. Together, these findings demonstrate that presynaptic accumulation of α-syn impairs the active zone and neuronal function, which together cause synaptopathy that results in behavioural deficits and the progressive loss of dopaminergic neurons. This sequence of events resembles the cytological and behavioural phenotypes that characterise the onset and progression of synucleinopathies, suggesting that α-syn-mediated synaptopathy is an initiating cause of age-related neurodegeneration.

5.
J Vis Exp ; (160)2020 06 11.
Article in English | MEDLINE | ID: mdl-32597845

ABSTRACT

Foraging and feeding behaviors allow animals to access sources of energy and nutrients essential for their development, health, and fitness. Investigating the neuronal regulation of these behaviors is essential for the understanding of the physiological and molecular mechanisms underlying nutritional homeostasis. The use of genetically tractable animal models such as worms, flies, and fish greatly facilitates these types of studies. In the last decade, the fruit fly Drosophila melanogaster has been used as a powerful animal model by neurobiologists investigating the neuronal control of feeding and foraging behaviors. While undoubtedly valuable, most studies examine adult flies. Here, we describe a protocol that takes advantage of the simpler larval nervous system to investigate neuronal substrates controlling feeding behaviors when larvae are exposed to diets differing in their protein and carbohydrates content. Our methods are based on a quantitative colorimetric no-choice feeding assay, performed in the context of a neuronal thermogenetic-activation screen. As a read-out, the amount of food eaten by larvae over a 1 h interval was used when exposed to one of the three dye-labeled diets that differ in their protein to carbohydrates (P:C) ratios. The efficacy of this protocol is demonstrated in the context of a neurogenetic screen in larval Drosophila, by identifying candidate neuronal populations regulating the amount of food eaten in diets of different macronutrient quality. We were also able to classify and group the genotypes tested into phenotypic classes. Besides a brief review of the currently available methods in the literature, the advantages and limitations of these methods are discussed and, also, some suggestions are provided about how this protocol might be adapted to other specific experiments.


Subject(s)
Drosophila melanogaster/physiology , Feeding Behavior/physiology , Neurons/physiology , Nutrients/metabolism , Thermogenesis/physiology , Analysis of Variance , Animals , Colorimetry , Diet , Drosophila melanogaster/genetics , Larva/physiology , Models, Animal , Phenotype
6.
Hum Mol Genet ; 26(19): 3763-3775, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28934390

ABSTRACT

Huntington's disease is neurodegenerative disorder caused by a polyglutamine expansion in the N-terminal region of the huntingtin protein (N17). Here, we analysed the relative contribution of each phosphorylatable residue in the N17 region (T3, S13 and S16) towards huntingtin exon 1 (HTTex1) oligomerization, aggregation and toxicity in human cells and Drosophila neurons. We used bimolecular fluorescence complementation to show that expression of single phosphomimic mutations completely abolished HTTex1 aggregation in human cells. In Drosophila, mimicking phosphorylation at T3 decreased HTTex1 aggregation both in larvae and adult flies. Interestingly, pharmacological or genetic inhibition of protein phosphatase 1 (PP1) prevented HTTex1 aggregation in both human cells and Drosophila while increasing neurotoxicity in flies. Our findings suggest that PP1 modulates HTTex1 aggregation by regulating phosphorylation on T3. In summary, our study suggests that modulation of HTTex1 single phosphorylation events by PP1 could constitute an efficient and direct molecular target for therapeutic interventions in Huntington's disease.


Subject(s)
Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Amino Acid Sequence , Animals , Drosophila , Exons , Humans , Huntington Disease/enzymology , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Mutation , Neurons/metabolism , Neurons/pathology , Phosphorylation , Protein Aggregates/genetics
7.
Hum Mol Genet ; 24(7): 1898-907, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25452431

ABSTRACT

Protein misfolding and aggregation is a major hallmark of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Until recently, the consensus was that each aggregation-prone protein was characteristic of each disorder [α-synuclein (α-syn)/PD, mutant huntingtin (Htt)/HD, Tau and amyloid beta peptide/AD]. However, growing evidence indicates that aggregation-prone proteins can actually co-aggregate and modify each other's behavior and toxicity, suggesting that this process may also contribute to the overlap in clinical symptoms across different diseases. Here, we show that α-syn and mutant Htt co-aggregate in vivo when co-expressed in Drosophila and produce a synergistic age-dependent increase in neurotoxicity associated to a decline in motor function and life span. Altogether, our results suggest that the co-existence of α-syn and Htt in the same neuronal cells worsens aggregation-related neuropathologies and accelerates disease progression.


Subject(s)
Drosophila/genetics , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/metabolism , alpha-Synuclein/metabolism , Animals , Animals, Genetically Modified , Disease Models, Animal , Drosophila/growth & development , Drosophila/metabolism , Female , Humans , Huntingtin Protein , Male , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/toxicity , Neurodegenerative Diseases/genetics , Protein Aggregates , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...