Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Sci ; 9(5)2022 May 03.
Article in English | MEDLINE | ID: mdl-35622750

ABSTRACT

Animals exhibit a wide variety of genetically determined coat colors and pigmentation patterns that serve important roles in adaptation and communication. Although the genetics of the main coat colors in dogs have been studied extensively, there are types of coat pigmentation that have not been explained yet. Recently, an association between the variants in the ASIP gene Ventral (VP) and Hair Cycle (HCP) promoters with different coat colors in dogs has been established. Here, we used the new findings as a basis to investigate the genetics of the red sesame coat color in Shiba Inu dogs. Our study revealed that red sesame dogs carry a specific heterozygous ASIP promoter diplotype, VP2-HCP1/VP2-HCP3, where VP2-HCP1 is responsible for the red coat with a dark overlay, and VP2-HCP3 for a tan point-like pattern. This finding explains the inheritance of this coat color pattern and can be used by breeders to produce dogs with this rare phenotype. A comparison of sesame dogs (VP2-HCP1/VP2-HCP3) to a dog homozygous for the VP2-HCP1 promoter haplotype suggests that the incomplete dominance between the ASIP alleles may be involved in the sesame coat formation. These results are in good agreement with the new model explaining how different levels of ASIP gene expression affect the regulation of pigment synthesis in melanocytes.

2.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(1): 156-164, 2019 01.
Article in English | MEDLINE | ID: mdl-29716429

ABSTRACT

The sterlet (Acipenser ruthenus Linnaeus, 1758) is a relatively small sturgeon widely distributed in Eurasian rivers from the Danube to the Yenisei. During the twentieth century, all wild sterlet populations have declined due to anthropogenic factors including: overfishing, poaching, construction of dams, and pollution. Despite the necessity of characterization both wild and captive stocks, few studies of population genetics have been performed thus far. Here we studied the genetic diversity and geographic structure of sterlet populations across the eastern range - Ob-Irtysh and Yenisei basins - by sequencing a 628-bp fragment of mitochondrial DNA control region. We identified 98 new haplotypes, delineated 12 haplogroups and estimated the time of basal haplogroup divergence within the species as over 8 million years ago. Our data suggest that Ob-Irtysh and Yenisei populations are isolated from each other and much lower genetic diversity is present in the Yenisei population than in the Ob-Irtysh population. Our data imply that sterlet populations in Siberian rivers underwent bottleneck or fragmentation, followed by subsequent population expansion. The data obtained here are important for sterlet population monitoring and restocking management.


Subject(s)
Endangered Species , Fishes/genetics , Polymorphism, Genetic , Animals , DNA, Mitochondrial/genetics , Evolution, Molecular , Fishes/classification , Haplotypes , Phylogeny , Phylogeography , Siberia
SELECTION OF CITATIONS
SEARCH DETAIL
...