Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Bioelectrochemistry ; 126: 130-136, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30590223

ABSTRACT

Geobacter sulfurreducens (Gs) attachment and biofilm formation on self-assembled monolayers (SAMs) of carboxyl-terminated alkanethiol linkers with varied chain length on gold (Au) was investigated by electrochemical and microscopic methods to elucidate the effect of the surface modification on the current production efficiency of Gs cells and biofilms. At the initial stage of the cell attachment, the electrochemical activity of Gs cells at a submonolayer coverage on the SAM-Au surface was independent of the linker length. Subsequently, multiple potential cyclings indicated that longer linkers provided more biocompatible conditions for Gs cells than shorter ones. For Gs biofilms, on the other hand, the turnover current decreased exponentially with the linker length. During the biofilm formation, bacteria need to adjust from the initial planktonic state to an electrode-respiring state, which was triggered by a strong electrochemical stress found for shorter linkers, resulting in the formation of mature biofilms. Our results suggest that the initial cell attachment and the biofilm formation are two inherently different processes. Therefore, the effects of linker molecules, electron transfer efficiency and biocompatibility, must be explored simultaneously to understand both processes to increase the current production of electrogenic microorganisms in microbial fuel cells.


Subject(s)
Alkanes/chemistry , Bioelectric Energy Sources/microbiology , Biofilms/growth & development , Carboxylic Acids/chemistry , Geobacter/physiology , Gold/chemistry , Sulfhydryl Compounds/chemistry , Bacterial Adhesion , Biocompatible Materials/chemistry , Electrodes , Electron Transport , Surface Properties
2.
Chem Commun (Camb) ; 50(79): 11757-9, 2014 Oct 11.
Article in English | MEDLINE | ID: mdl-25144878

ABSTRACT

The forces required for the detachment of ferrocene (Fc) from ß-cyclodextrin (ßCD) in a single host (ßCD)-guest (Fc) complex were investigated using force spectroscopy under electrochemical conditions. The redox state of the guest Fc moiety as well as the structure of the supporting matrix was found to decisively affect the nanomechanical properties of the complex.

3.
Nanotechnology ; 22(14): 145306, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21368355

ABSTRACT

We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.


Subject(s)
Boron/chemistry , Diamond/chemistry , Electrochemical Techniques/instrumentation , Gold/chemistry , Microscopy, Atomic Force/instrumentation , Microscopy, Atomic Force/methods , Nanotechnology/methods , Algorithms , Chromium/chemistry , Electrochemical Techniques/methods , Electrochemistry , Microelectrodes , Microscopy, Electron, Scanning , Microscopy, Scanning Probe/instrumentation , Microscopy, Scanning Probe/methods , Silicon/chemistry , Silicon Compounds/chemistry , Spectrometry, X-Ray Emission , Titanium/chemistry
4.
J Phys Condens Matter ; 20(37): 374122, 2008 Sep 17.
Article in English | MEDLINE | ID: mdl-21694429

ABSTRACT

We report a scanning tunneling microscopy (STM) experiment in an electrochemical environment which studies a prototype molecular switch. The target molecules were perylene tetracarboxylic acid bisimides modified with pyridine (P-PBI) and methylthiol (T-PBI) linker groups and with bulky tert-butyl-phenoxy substituents in the bay area. At a fixed bias voltage, we can control the transport current through a symmetric molecular wire Au|P-PBI(T-PBI)|Au by variation of the electrochemical 'gate' potential. The current increases by up to two orders of magnitude. The conductances of the P-PBI junctions are typically a factor 3 larger than those of T-PBI. A theoretical analysis explains this effect as a consequence of shifting the lowest unoccupied perylene level (LUMO) in or out of the bias window when tuning the electrochemical gate potential VG. The difference in on/off ratios reflects the variation of hybridization of the LUMO with the electrode states with the anchor groups. I(T)-E(S(T)) curves of asymmetric molecular junctions formed between a bare Au STM tip and a T-PBI (P-PBI) modified Au(111) electrode in an aqueous electrolyte exhibit a pronounced maximum in the tunneling current at -0.740, which is close to the formal potential of the surface-confined molecules. The experimental data were explained by a sequential two-step electron transfer process.

5.
Faraday Discuss ; 131: 121-43; discussion 205-20, 2006.
Article in English | MEDLINE | ID: mdl-16512368

ABSTRACT

The self-assembly and redox-properties of two viologen derivatives, N-hexyl-N'-(6-thiohexyl)-4,4'-bipyridinium bromide (HS-6V6-H) and N,N'-bis(6-thiohexyl)-4,4'-bipyridinium bromide (HS-6V6-SH), immobilized on Au(lll)-(1 x 1) macro-electrodes were investigated by cyclic voltammetry, surface enhanced infrared spectroscopy (SEIRAS) and in situ scanning tunneling microscopy (STM). Depending on the assembly conditions one could distinguish three different types of adlayers for both viologens: a low coverage disordered and an ordered "striped" phase of flat oriented molecules as well as a high coverage monolayer composed of tilted viologen moieties. Both molecules, HS-6V6-H and HS-6V6-SH, were successfully immobilized on Au(poly) nano-electrodes, which gave a well-defined redox-response in the lower pA-current range. An in situ STM configuration was employed to explore electron transport properties of single molecule junctions Au(T)/HS-6V6-SH(HS-6V6-H)/Au(S). The observed sigmoidal potential dependence, measured at variable substrate potential E(S) and at constant bias voltage (E(T) - E(S)), was attributed to electronic structure changes of the viologen moiety during the one-electron reduction/re-oxidation process V2+ < -- > V+*. Tunneling experiments in asymmetric, STM-based junctions Au(T)-S-6V6-H/Au(S) revealed current (i(T))-voltage (E(T)) curves with a maximum located at the equilibrium potential of the redox-process V2+ < -- > V+*. The experimental i(T)--E(T) characteristics of the HS-6V6-H-modified tunneling junction were tentatively attributed to a sequential two-step electron transfer mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL