Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Vaccines (Basel) ; 7(3)2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31340594

ABSTRACT

Zika virus (ZIKV) is a flavivirus similar to Dengue virus (DENV) in terms of transmission and clinical manifestations, and usually both viruses are found to co-circulate. ZIKV is usually transmitted by mosquitoes bites, but may also be transmitted by blood transfusion, via the maternal-foetal route, and sexually. After 2015, when the most extensive outbreak of ZIKV had occurred in Brazil and subsequently spread throughout the rest of South America, it became evident that ZIKV infection during the first trimester of pregnancy was associated with microcephaly and other neurological complications in newborns. As a result, the development of a vaccine against ZIKV became an urgent goal. A major issue with DENV vaccines, and therefore likely also with ZIKV vaccines, is the induction of antibodies that fail to neutralize the virus properly and cause antibody-dependent enhancement (ADE) of the infection instead. It has previously been shown that antibodies against the third domain of the envelope protein (EDIII) induces optimally neutralizing antibodies with no evidence for ADE for other viral strains. Therefore, we generated a ZIKV vaccine based on the EDIII domain displayed on the immunologically optimized Cucumber mosaic virus (CuMVtt) derived virus-like particles (VLPs) formulated in dioleoyl phosphatidylserine (DOPS) as adjuvant. The vaccine induced high levels of specific IgG after a single injection. The antibodies were able to neutralise ZIKV without enhancing infection by DENV in vitro. Thus, the here described vaccine based on EDIII displayed on VLPs was able to stimulate production of antibodies specifically neutralizing ZIKV without potentially enhancing disease caused by DENV.

3.
Nat Commun ; 8: 15931, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28714464

ABSTRACT

While one might assume that the force to break a chemical bond gives a measure of the bond strength, this intuition is misleading. If the force is loaded slowly, thermal fluctuations may break the bond before it is maximally stretched, and the breaking force will be less than the bond can sustain. Conversely, if the force is loaded rapidly it is more likely that the maximum breaking force is measured. Paradoxically, no clear differences in breaking force were observed in experiments on gold nanowires, despite being conducted under very different conditions. Here we explore the breaking behaviour of a single Au-Au bond and show that the breaking force is dependent on the loading rate. We probe the temperature and structural dependencies of breaking and suggest that the paradox can be explained by fast breaking of atomic wires and slow breaking of point contacts giving very similar breaking forces.

4.
Phys Chem Chem Phys ; 18(40): 27733-27737, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27722361

ABSTRACT

A redox-active persistent perchlorotriphenylmethyl (PTM) radical chemically linked to gold exhibits stable electrochemical activity in ionic liquids. Electrochemical tunnelling spectroscopy in this medium demonstrates that the PTM radical shows a highly effective redox-mediated current enhancement, demonstrating its applicability as an active nanometer-scale electronic component.

5.
Nanoscale ; 7(42): 17685-92, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26352153

ABSTRACT

Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 µA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

6.
Sci Rep ; 5: 9002, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25758349

ABSTRACT

Electrical and mechanical properties of elongated gold-molecule-gold junctions formed by tolane-type molecules with different anchoring groups (pyridyl, thiol, amine, nitrile and dihydrobenzothiophene) were studied in current-sensing force spectroscopy experiments and density functional simulations. Correlations between forces, conductances and junction geometries demonstrate that aromatic tolanes bind between electrodes as single molecules or as weakly-conductive dimers held by mechanically-weak π - π stacking. In contrast with the other anchors that form only S-Au or N-Au bonds, the pyridyl ring also forms a highly-conductive cofacial link to the gold surface. Binding of multiple molecules creates junctions with higher conductances and mechanical strengths than the single-molecule ones.

7.
J Phys Chem Lett ; 5(20): 3560-4, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-26278610

ABSTRACT

Forces acting on elongated gold nanojunctions and their electric conductance were simultaneously measured by current-sensing force spectroscopy in an atmosphere with controlled humidity. The breaking force of "thick" nanojunctions with conductance >20G0 is not affected by the environmental humidity. The presence of ambient water stabilizes "thin" nanojunctions with conductance <15G0, whose breaking force of 10-15 nN was higher than that in a dry atmosphere due to the capillary forces. The observed effect of humidity would not be possible to distinguish by techniques measuring only forces or only conductance in nanojunctions.

8.
Nanotechnology ; 24(11): 115501, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23448801

ABSTRACT

Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current-distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.


Subject(s)
Electric Conductivity , Electrochemistry/methods , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Oxidation-Reduction , Solutions
9.
J Phys Condens Matter ; 24(16): 164210, 2012 Apr 25.
Article in English | MEDLINE | ID: mdl-22466399

ABSTRACT

We describe a new setup for simultaneous measurements of force and current in conductive nanocontacts in a liquid environment with a high sampling rate and resolution. A lab-built current-to-voltage converter allows measurements of the current over seven orders of magnitude. As examples, we studied conductances and mechanical forces upon formation and breaking of gold atomic contacts and of two molecular junctions containing 1,2-di(4-pyridyl)ethyne (M1) and 1,4-di(4-pyridyl)buta-1,3-diyne (M2). We found that the forces required to deform or break gold atomic contacts depend critically on the surrounding medium. Further, they show non-linear behaviour in dependence of the number N of gold atoms detached. The electromechanical properties of the two types of molecular junctions upon stretching were analysed by correlating breaking forces with simultaneously measured junction conductances. A rather complex behaviour in a wide range of forces was discovered. Comparison of the current-probe atomic force microscopy experiments on the rupture of molecular junctions with STM-based break junction experiments enables the assignment of breaking forces of molecular junctions to the corresponding junction conductances.


Subject(s)
Electric Conductivity , Gold/chemistry , Mechanical Phenomena , Alkanes/chemistry , Benzene Derivatives/chemistry , Models, Molecular , Molecular Conformation , Solvents/chemistry
10.
J Am Chem Soc ; 132(23): 8187-93, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20481543

ABSTRACT

Electron transport characteristics were studied in redox molecule-modified tunneling junctions Au(111)/6-thiohexanoylferrocene (Fc6)/solution gap/Au STM tip in the absence and in the presence of gold nanoclusters employing an electrochemical STM setup. We observed transistor- and diode-like current-voltage responses accounted for by the redox process at the ferrocene moiety. We demonstrate that the reorganization energy of the redox site decreases with decreasing gap size. As a unique new feature, we discovered the formation of uniform (size approximately 2.4 nm) gold nanoparticles, upon multiple oxidation/reduction cycles of the Fc6 adlayer. The immobilized nanoparticles modify the electron transport response of the Fc6 tunneling junctions dramatically. On top of embedded single nanoparticles we observed single-electron Coulomb charging signatures with up to seven narrow and equally spaced energy states upon electrochemical gating. Our results demonstrate the power of the electrochemical approach in molecular electronics and offer a new perspective toward two-state and multistate electronic switching in condensed media at room temperature.


Subject(s)
Organometallic Compounds/chemistry , Electric Conductivity , Electrochemistry , Electrodes , Electrolytes/chemistry , Electron Transport , Ferrous Compounds/chemistry , Gold/chemistry , Metallocenes , Spectrum Analysis , Surface Properties , Transistors, Electronic
11.
Nano Lett ; 10(1): 156-63, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20025266

ABSTRACT

The conductance of a family of biphenyl-dithiol derivatives with conformationally fixed torsion angle was measured using the scanning tunneling microscopy (STM)-break-junction method. We found that it depends on the torsion angle phi between two phenyl rings; twisting the biphenyl system from flat (phi = 0 degrees ) to perpendicular (phi = 90 degrees ) decreased the conductance by a factor of 30. Detailed calculations of transport based on density functional theory and a two level model (TLM) support the experimentally obtained cos(2) phi correlation between the junction conductance G and the torsion angle phi. The TLM describes the pair of hybridizing highest occupied molecular orbital (HOMO) states on the phenyl rings and illustrates that the pi-pi coupling dominates the transport under "off-resonance" conditions where the HOMO levels are well separated from the Femi energy.


Subject(s)
Biphenyl Compounds/chemistry , Toluene/analogs & derivatives , Chemistry, Organic/methods , Crystallization , Electric Conductivity , Electrochemistry/methods , Metals/chemistry , Microscopy, Scanning Tunneling/methods , Models, Chemical , Molecular Conformation , Molecular Structure , Nanostructures , Nanotechnology/methods , Quantum Theory , Toluene/chemistry
12.
J Am Chem Soc ; 130(47): 16045-54, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-18975950

ABSTRACT

We report on the construction of an asymmetric tunneling junction between a Au STM tip and a Au(111)-(1 x 1) substrate electrode modified with the redox-active molecule N-hexyl-N'-(6-thiohexyl)-4,4'-bipyridinium bromide (HS6V6) in an electrochemical environment. The experiments focused on the reversible one-electron transfer reaction between the viologen dication V(2+) and the radical cation V(+*). Employing the concept of "electrolyte gating" we demonstrate transistor- and diodelike behavior based on in situ scanning tunneling spectroscopy at constant or variable bias voltages. We derived criteria and verified that the experimental data could be represented quantitatively by a model assuming a two-step electron transfer with partial vibrational relaxation. The analysis illustrates that the magnitude of the tunneling enhancement depends on the initial redox state of HS6V6 (V(2+) or V(+*)). Characteristic parameters, such as reorganization energy, potential drop, and overpotential across the tunneling gap were estimated and discussed. We present a clear discrimination between the redox-mediated enhanced and the off-resonance tunneling currents I(enh) respective I(T) and distinguish between electron transfer in symmetric and asymmetric Au | redox-molecule | Au configurations.

SELECTION OF CITATIONS
SEARCH DETAIL
...