Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(30): 20320-20330, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37219530

ABSTRACT

Nanoscale silver particles have growing applications in biomedical and other technologies due to their unique antibacterial, optical, and electrical properties. The preparation of metal nanoparticles requires the action of a capping agent, such as thiol-containing compounds, to provide colloidal stability, prevent agglomeration, stop uncontrolled growth, and attenuate oxidative damage. However, despite the extensive use of these thiol-based capping agents, the structure of the capping agent layers on the metal surface and the thermodynamics of the formation of these layers remains poorly understood. Here, we leverage molecular dynamics simulations and free energy calculation techniques, to study the behavior of citrate and four thiol-containing capping agents commonly used to protect silver nanoparticles from oxidation. We have studied the single-molecule adsorption of these capping agents to the metal-water interface, their coalescence into clusters, and the formation of complete monolayers covering the metal nanoparticle. At sufficiently high concentrations, we find that allylmercaptan, lipoic acid, and mercaptohexanol spontaneously self-assemble into ordered layers with the thiol group in contact with the metal surface. The high density and ordered structure is presumably responsible for their improved protective characteristics relative to the other compounds studied.

2.
Langmuir ; 38(33): 10173-10182, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35947770

ABSTRACT

Polyoxyethylene sorbitan monooleate is commonly used to obtain stable dispersions of nanoparticles (NPs) such as carbon nanotubes (CNTs) and graphene. However, the mechanism underlying dispersion is poorly understood. The present study aimed at investigating the mechanism of stabilization of carbon NPs (CNPs), namely, single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs), and graphene, by Tween-80 using attenuated total internal reflection-Fourier transform infrared and nuclear magnetic resonance (NMR) spectroscopy. Molecular dynamics (MD) simulations were performed to identify, at the atomic scale, the significant interactions that underlie the adsorption and the stabilizing effect of Tween-80 on CNPs, in this way corroborating the spectroscopy results. Spectroscopic analysis revealed that the alkyl chain tether to SWCNT, MWCNT, and graphene surface, presumably through π-π interactions between the carbon-carbon double bond in the alkyl chain and the aromatic rings of CNPs. The hydrophilic polyethoxylate chains extend into the aqueous environment and stabilize the suspension by steric hindrance. MD simulations also showed that Tween-80 molecules interact with the CNP surface via the alkyl chain, thus corroborating spectroscopy results. MD simulations additionally revealed that Tween-80 aggregates on the CNP surface shifted from planar to micelle-like with increasing Tween-80 ratios, underscoring concentration-dependent changes in the nature of these interactions.


Subject(s)
Graphite , Nanotubes, Carbon , Adsorption , Nanotubes, Carbon/chemistry , Polysorbates , Spectrum Analysis
3.
J Chem Inf Model ; 62(12): 3067-3078, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35670773

ABSTRACT

Pseudomonas aeruginosa is a highly pathogenic Gram-negative microorganism associated with high mortality levels in burned or immunosuppressed patients or individuals affected by cystic fibrosis. Studies support a colonization mechanism whereby P. aeruginosa can breakdown the host cell membrane phospholipids through the sequential action of two enzymes: (I) hemolytic phospholipase C acting upon phosphatidylcholine or sphingomyelin to produce phosphorylcholine (Pcho) and (II) phosphorylcholine phosphatase (PchP) that hydrolyzes Pcho to generate choline and inorganic phosphate. This coordinated action provides the bacteria with carbon, nitrogen, and inorganic phosphate to support growth. Furthermore, PchP exhibits a distinctive inhibition mechanism by high substrate concentration. Here, we combine kinetic assays and computational approaches such as molecular docking, molecular dynamics, and free-energy calculations to describe the inhibitory site of PchP, which shares specific residues with the enzyme's active site. Our study provides insights into a coupled inhibition mechanism by the substrate, allowing us to postulate that the integrity of the inhibition site is needed to the correct functioning of the active site. Our results allow us to gain a better understanding of PchP function and provide the basis for a rational drug design that might contribute to the treatment of infections caused by this important opportunistic pathogen.


Subject(s)
Phosphoric Monoester Hydrolases , Pseudomonas aeruginosa , Humans , Molecular Docking Simulation , Phosphates/metabolism , Phosphoric Monoester Hydrolases/chemistry , Phosphorylcholine/chemistry , Phosphorylcholine/pharmacology , Pseudomonas aeruginosa/metabolism
4.
Pharmaceutics ; 14(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35745721

ABSTRACT

The present work focuses on the computational study of the structural micro-organization of hydrogels based on collagen-like peptides (CLPs) in complex with Rose Bengal (RB). In previous studies, these hydrogels computationally and experimentally demonstrated that when RB was activated by green light, it could generate forms of stable crosslinked structures capable of regenerating biological tissues such as the skin and cornea. Here, we focus on the structural and atomic interactions of two collagen-like peptides (collagen-like peptide I (CLPI), and collagen-like peptide II, (CLPII)) in the presence and absence of RB, highlighting the acquired three-dimensional organization and going deep into the stabilization effect caused by the dye. Our results suggest that the dye could generate a ternary ground-state complex between collagen-like peptide fibers, specifically with positively charged amino acids (Lys in CLPI and Arg in CLPII), thus stabilizing ordered three-dimensional structures. The discoveries generated in this study provide the structural and atomic bases for the subsequent rational development of new synthetic peptides with improved characteristics for applications in the regeneration of biological tissues during photochemical tissue bonding therapies.

5.
ACS Nano ; 16(3): 3522-3537, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35157804

ABSTRACT

We report the development, as well as the in vitro and in vivo testing, of a sprayable nanotherapeutic that uses surface engineered custom-designed multiarmed peptide grafted nanogold for on-the-spot coating of an infarcted myocardial surface. When applied to mouse hearts, 1 week after infarction, the spray-on treatment resulted in an increase in cardiac function (2.4-fold), muscle contractility, and myocardial electrical conductivity. The applied nanogold remained at the treatment site 28 days postapplication with no off-target organ infiltration. Further, the infarct size in the mice that received treatment was found to be <10% of the total left ventricle area, while the number of blood vessels, prohealing macrophages, and cardiomyocytes increased to levels comparable to that of a healthy animal. Our cumulative data suggest that the therapeutic action of our spray-on nanotherapeutic is highly effective, and in practice, its application is simpler than other regenerative approaches for treating an infarcted heart.


Subject(s)
Myocardial Infarction , Animals , Disease Models, Animal , Electric Conductivity , Macrophages , Mice , Myocardial Infarction/drug therapy , Myocardium , Myocytes, Cardiac
6.
Phys Chem Chem Phys ; 23(43): 24545-24549, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34704576

ABSTRACT

We have studied the suitability of using a molecular rotor-based steady-state fluorometric assay for evaluating changes in both the conformation and the viscosity of collagen-like peptide solutions. Our results indicate that a positive charge incorporated on the hydrophobic tail of the BODIPY molecular rotor favours the dye specificity as a reporter for viscosity of these solutions.


Subject(s)
Peptides/chemistry , Boron Compounds/chemistry , Collagen/chemistry , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Solutions , Spectrometry, Fluorescence , Viscosity
7.
FASEB J ; 34(6): 7847-7865, 2020 06.
Article in English | MEDLINE | ID: mdl-32301552

ABSTRACT

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+ -activated nonselective cationic channel that regulates cell migration and contractility. Increased TRPM4 expression has been related to pathologies, in which cytoskeletal rearrangement and cell migration are altered, such as metastatic cancer. Here, we identify the K+ channel tetramerization domain 5 (KCTD5) protein, a putative adaptor of cullin3 E3 ubiquitin ligase, as a novel TRPM4-interacting protein. We demonstrate that KCTD5 is a positive regulator of TRPM4 activity by enhancing its Ca2+ sensitivity. We show that through its effects on TRPM4 that KCTD5 promotes cell migration and contractility. Finally, we observed that both TRPM4 and KCTD5 expression are increased in distinct patterns in different classes of breast cancer tumor samples. Together, these data support that TRPM4 activity can be regulated through expression levels of either TRPM4 or KCTD5, not only contributing to increased understanding of the molecular mechanisms involved on the regulation of these important ion channels, but also providing information that could inform treatments based on targeting these distinct molecules that define TRPM4 activity.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement/physiology , Potassium Channels/metabolism , TRPM Cation Channels/metabolism , Animals , Breast/metabolism , Breast/pathology , COS Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Female , HEK293 Cells , Humans , MCF-7 Cells , Prognosis , Ubiquitin-Protein Ligases/metabolism
8.
Elife ; 82019 12 19.
Article in English | MEDLINE | ID: mdl-31855177

ABSTRACT

That channels and transporters can influence the membrane morphology is increasingly recognized. Less appreciated is that the extent and free-energy cost of these deformations likely varies among different functional states of a protein, and thus, that they might contribute significantly to defining its mechanism. We consider the trimeric Na+-aspartate symporter GltPh, a homolog of an important class of neurotransmitter transporters, whose mechanism entails one of the most drastic structural changes known. Molecular simulations indicate that when the protomers become inward-facing, they cause deep, long-ranged, and yet mutually-independent membrane deformations. Using a novel simulation methodology, we estimate that the free-energy cost of this membrane perturbation is in the order of 6-7 kcal/mol per protomer. Compensating free-energy contributions within the protein or its environment must thus stabilize this inward-facing conformation for the transporter to function. We discuss these striking results in the context of existing experimental observations for this and other transporters.


Subject(s)
Energy Metabolism , Protein Conformation , Sodium/metabolism , Symporters/genetics , Aspartic Acid/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Ions/chemistry , Ions/metabolism , Molecular Dynamics Simulation , Protein Subunits/chemistry , Protein Subunits/metabolism , Pyrococcus horikoshii/chemistry , Symporters/metabolism , Symporters/ultrastructure
9.
ACS Appl Mater Interfaces ; 11(48): 45007-45015, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31702888

ABSTRACT

Using chemically modified extracellular matrix proteins, such as collagen, in combination with light for tissue bonding reduces inflammation and minimizes scarring. However, full length animal or recombinant human collagen proteins are difficult to isolate/produce. Thus, short biomimetic collagen peptides with properties equivalent to collagen at both structural and functional levels may be ideal building blocks for the development of remotely triggered adhesives and fillers. In this work, the conjugation of self-assembling collagen-like peptides to acrylate functionalized polyethylene glycol units yielded adhesive filler materials activated by visible light through the incorporation of a photosensitizer. When tested in a murine skin wound model, the photoactivated adhesives showed reduced scar formation and promoted epithelial regeneration.


Subject(s)
Peptides/administration & dosage , Photosensitizing Agents/chemistry , Wounds and Injuries/drug therapy , Animals , Collagen/chemistry , Female , Humans , Light , Mice , Mice, Inbred C57BL , Peptides/chemistry , Polyethylene Glycols/chemistry , Skin/injuries , Skin/physiopathology , Wound Healing/drug effects , Wounds and Injuries/physiopathology
10.
Biophys J ; 117(2): 377-387, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31278002

ABSTRACT

After opening, the Shaker voltage-gated potassium (KV) channel rapidly inactivates when one of its four N-termini enters and occludes the channel pore. Although it is known that the tip of the N-terminus reaches deep into the central cavity, the conformation adopted by this domain during inactivation and the nature of its interactions with the rest of the channel remain unclear. Here, we use molecular dynamics simulations coupled with electrophysiology experiments to reveal the atomic-scale mechanisms of inactivation. We find that the first six amino acids of the N-terminus spontaneously enter the central cavity in an extended conformation, establishing hydrophobic contacts with residues lining the pore. A second portion of the N-terminus, consisting of a long 24 amino acid α-helix, forms numerous polar contacts with residues in the intracellular entryway of the T1 domain. Double mutant cycle analysis revealed a strong relationship between predicted interatomic distances and empirically observed thermodynamic coupling, establishing a plausible model of the transition of KV channels to the inactivated state.


Subject(s)
Ion Channel Gating , Models, Molecular , Potassium Channels, Voltage-Gated/metabolism , Amino Acids/chemistry , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Potassium Channels, Voltage-Gated/chemistry , Protein Folding , Protein Structure, Secondary , Reproducibility of Results , Thermodynamics
11.
Elife ; 82019 07 04.
Article in English | MEDLINE | ID: mdl-31271355

ABSTRACT

In silico and in vitro studies have made progress in understanding protein-protein complex formation; however, the molecular mechanisms for their dissociation are unclear. Protein-protein complexes, lasting from microseconds to years, often involve induced-fit, challenging computational or kinetic analysis. Charybdotoxin (CTX), a peptide from the Leiurus scorpion venom, blocks voltage-gated K+-channels in a unique example of binding/unbinding simplicity. CTX plugs the external mouth of K+-channels pore, stopping K+-ion conduction, without inducing conformational changes. Conflicting with a tight binding, we show that external permeant ions enhance CTX-dissociation, implying a path connecting the pore, in the toxin-bound channel, with the external solution. This sensitivity is explained if CTX wobbles between several bound conformations, producing transient events that restore the electrical and ionic trans-pore gradients. Wobbling may originate from a network of contacts in the interaction interface that are in dynamic stochastic equilibria. These partially-bound intermediates could lead to distinct, and potentially manipulable, dissociation pathways.


Subject(s)
Charybdotoxin/metabolism , Ions/metabolism , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/metabolism , Potassium/metabolism , Animals , Arachnida/metabolism , Potassium Channels, Voltage-Gated/drug effects , Protein Binding , Protein Conformation
12.
ACS Appl Mater Interfaces ; 11(19): 17697-17705, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31013043

ABSTRACT

The effect of accounting for the total surface in the association of thiol-containing molecules to nanosilver was assessed using isothermal titration calorimetry, along with a new open access algorithm that calculates the total surface area for samples of different polydispersity. Further, we used advanced molecular dynamic calculations to explore the underlying mechanisms for the interaction of the studied molecules in the presence of a nanosilver surface in the form of flat surfaces or as three-dimensional pseudospherical nanostructures. Our data indicate that not only is the total surface area available for binding but also the supramolecular arrangements of the molecules in the near proximity of the nanosilver surface strongly affects the affinity of thiol-containing molecules to nanosilver surfaces.

13.
J Chem Theory Comput ; 15(2): 1302-1316, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30592594

ABSTRACT

Adsorption of organic molecules from aqueous solution to the surface of carbon nanotubes or graphene is an important process in many applications of these materials. Here we use molecular dynamics simulation, supplemented by analytical chemistry, to explore in detail the adsorption thermodynamics of a diverse set of aromatic compounds on graphenic materials, elucidating the effects of the solvent, surface coverage, surface curvature, defects, and functionalization by hydroxy groups. We decompose the adsorption free energies into entropic and enthalpic components and find that different classes of compounds-such as phenols, benzoates, and alkylbenzenes-can easily be distinguished by the relative contributions of entropy and enthalpy to their adsorption free energies. Overall, entropy dominates for the more hydrophobic compounds, while enthalpy plays the greatest role for more hydrophilic compounds. Experiments and independent simulations using two different force field frameworks (CHARMM and Amber) support the robustness of these conclusions. We determine that concave curvature is generally associated with greater adsorption affinity, more favorable enthalpy, and greater contact area, while convex curvature reduces both adsorption enthalpy and contact area. Defects on the graphene surfaces can create concave curvature, resulting in localized binding sites. As the graphene surface becomes covered with aromatic solutes, the affinity for adsorbing an additional solute increases until a complete monolayer is formed, driven by more favorable enthalpy and partially canceled by less favorable entropy. Similarly, hydroxylation of the surface leads to preferential adsorption of the aromatic solutes to remaining regions of bare graphene, resulting in less favorable adsorption entropy, but compensated by an increase in favorable enthalpic interactions.

14.
Phys Chem Chem Phys ; 20(43): 27621-27629, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30371697

ABSTRACT

A new hybrid cinnamoyl-coumarin probe was synthesised to study the formation and dynamics of a twisted internal charge transfer (TICT) excited state in homogeneous and biological membrane models. This probe showed a large bathochromic shift of the fluorescence band with the solvent polarity, which is associated with the decrease in the fluorescence intensity due to fast non-radiative deactivation pathways, ascribed to TICT excited state formation in polar solvents. The calculated potential energy surfaces using density functional theory (DFT) and time dependent-DFT (TD-DFT) along with the energetic barriers calculated using the ABF methodology established the energy requirements for a rotational twisting of the cinnamoyl-coumarin bond for TICT excited state formation. This strategy has allowed estimating the role of the ground state conformation and excited state distribution that, concomitant with fluorescence lifetime measurements, describes in detail dual fluorescence emission from TICT and ICT excited states. Moreover, the high sensitivity of fluorescence lifetimes of the TICT excited state in liposomes allows us to propose the use of this type of probes as a powerful tool for the study of gel and crystalline liquid phases in lipid membrane models. The development of this new approach will allow rationalizing and understanding the photochemical behavior of fluorescent TICT-based probes in constrained biological environments.


Subject(s)
Coumarins/chemistry , Membranes/chemistry , Models, Biological , Fluorescence , Liposomes/chemistry , Molecular Conformation , Photochemistry , Quantum Theory , Solvents/chemistry
15.
Nanoscale ; 10(34): 15911-15917, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30106074

ABSTRACT

The interaction of a terminal tryptophan residue within collagen mimetic peptides when tethered to nanometric silver surfaces was studied using a combination of steady state spectroscopy, ultrafast spectroscopy, and molecular dynamics experiments. Our findings indicate that the effective interaction between the tryptophan and the metal surface occurs in short-time scales (ps) and it is responsible for improving the colloidal stability of the nanoparticles exposed to free radicals. The extent and efficiency of the interaction depends on factors beyond the peptide length that include conformation and distance from the terminal tryptophan to the metal surface.


Subject(s)
Metal Nanoparticles/chemistry , Peptides/chemistry , Reactive Oxygen Species/chemistry , Silver/chemistry , Tryptophan/chemistry
16.
J Comput Chem ; 39(16): 986-992, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29399821

ABSTRACT

Protein kinases (PKs) discriminate between closely related sequences that contain serine, threonine, and/or tyrosine residues. Such specificity is defined by the amino acid sequence surrounding the phosphorylatable residue, so that it is possible to identify an optimal recognition motif (ORM) for each PK. The ORM for the protein kinase A (PKA), a well-known member of the PK family, is the sequence RRX(S/T)X, where arginines at the -3 and -2 positions play a key role with respect to the primed phosphorylation site. In this work, differential affinities of PKA for the peptide substrate Kemptide (LRRASLG) and mutants that substitute the arginine residues by the unnatural peptide homoarginine were evaluated through molecular dynamics (MD) and free energy perturbation (FEP) calculations. The FEP study for the homoarginine mutants required previous elaboration of a CHARMM "arginine to homoarginine" (R2B) hybrid topology file which is available in this manuscript as Supporting Information. Mutants substituting the arginine residues by alanine, lysine, and histidine were also considered in the comparison by using the same protocol. FEP calculations allowed estimating the free energy changes from the free PKA to PKA-substrate complex (ΔΔGE→ES ) when Kemptide structure was mutated. Both ΔΔGS→ES values for homoarginine mutants were predicted with a difference below 1 kcal/mol. In addition, FEP correctly predicted that all the studied mutations decrease the catalytic efficiency of Kemptide for PKA. © 2018 Wiley Periodicals, Inc.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Homoarginine/chemistry , Oligopeptides/chemistry , Peptides/chemistry , Peptides/metabolism , Quantum Theory , Thermodynamics
18.
J Phys Chem B ; 121(15): 3895-3907, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28291356

ABSTRACT

Understanding the interaction of carbon nanomaterials with proteins is essential for determining the potential effects of these materials on health and in the design of biotechnology based on them. Here we leverage explicit-solvent molecular simulation and multidimensional free-energy calculations to investigate how adsorption to carbon nanomaterial surfaces affects the conformational equilibrium of alanine dipeptide, a widely used model of protein backbone structure. We find that the two most favorable structures of alanine dipeptide on graphene (or large carbon nanotubes) correspond to the two amide linkages lying in the same plane, flat against the surface, rather than the nonplanar α-helix-like and ß-sheet-like conformations that predominate in aqueous solution. On graphenic surfaces, the latter conformations are metastable and most often correspond to amide-π stacking of the N-terminal amide. The calculations highlight the key role of amide-π interactions in determining the conformational equilibrium. Lesser but significant contributions from hydrogen bonding to the high density interfacial water layer or to the hydroxy groups of hydroxylated graphene also define the most favorable conformations. This work should yield insight on the influence of carbon nanotubes, graphene, and their functionalized derivatives on protein structure.


Subject(s)
Alanine/chemistry , Dipeptides/chemistry , Graphite/chemistry , Molecular Dynamics Simulation , Hydroxylation , Protein Conformation
19.
ACS Omega ; 2(10): 6646-6657, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-31457260

ABSTRACT

We investigated two critical aspects of rose Bengal (RB) photosensitized protein cross-linking that may underlie recently developed medical applications. Our studies focused on the binding of RB to collagen by physical interaction and the effect of this binding and certain amino acids on RB photochemistry. Molecular dynamics simulations and free-energy calculation techniques, complemented with isothermal titration calorimetry, provided insight into the binding between RB and a collagen-like peptide (CLP) at the atomic level. Electrostatic interactions dominated, which is consistent with the finding that RB bound equally well to triple helical and single chain collagen. The binding free energy ranged from -5.7 to -3 kcal/mol and was strongest near the positively charged amino groups at the N-terminus and on lysine side chains. At high RB concentration, a maximum of 16 ± 3 bound dye molecules per peptide was found, which is consistent with spectroscopic evidence for aggregated RB bound to collagen or the CLP. Within a tissue-mimetic collagen matrix, RB photobleached rapidly, probably due to electron transfer to certain protein amino acids, as was demonstrated in solutions of free RB and arginine. In the presence of arginine and low oxygen concentrations, a product absorbing at 510 nm formed, presumably due to dehalogenation after electron transfer to RB. In the collagen matrix without arginine, the dye generated singlet oxygen as well as the 510 nm product. These results provide the first evidence of the effects of a tissue-like environment on the photochemical mechanisms of rose Bengal.

20.
J Chem Inf Model ; 56(12): 2486-2494, 2016 12 27.
Article in English | MEDLINE | ID: mdl-27959521

ABSTRACT

Sampatrilat is a vasopeptidase inhibitor that inhibits both angiotensin I-converting enzyme (ACE) and neutral endopeptidase. ACE is a zinc dipeptidyl carboxypeptidase that contains two extracellular domains (nACE and cACE). In this study the molecular basis for the selectivity of sampatrilat for nACE and cACE was investigated. Enzyme inhibition assays were performed to evaluate the in vitro ACE domain selectivity of sampatrilat. The inhibition of the C-domain (Ki = 13.8 nM) by sampatrilat was 12.4-fold more potent than that for the N-domain (171.9 nM), indicating differences in affinities for the respective ACE domain binding sites. Interestingly, replacement of the P2 group of sampatrilat with an aspartate abrogated its C-selectivity and lowered the potency of the inhibitor to activities in the micromolar range. The molecular basis for this selective profile was evaluated using molecular modeling methods. We found that the C-domain selectivity of sampatrilat is due to occupation of the lysine side chain in the S1 and S2 subsites and interactions with Glu748 and Glu1008, respectively. This study provides new insights into ligand interactions with the nonprime binding site that can be exploited for the design of domain-selective ACE inhibitors.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Mesylates/pharmacology , Peptidyl-Dipeptidase A/metabolism , Protease Inhibitors/pharmacology , Tyrosine/analogs & derivatives , Angiotensin-Converting Enzyme Inhibitors/chemistry , Humans , Mesylates/chemistry , Models, Molecular , Peptidyl-Dipeptidase A/chemistry , Protease Inhibitors/chemistry , Protein Domains , Tyrosine/chemistry , Tyrosine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...