Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 409(1): 85-91, 2000 Dec 01.
Article in English | MEDLINE | ID: mdl-11099704

ABSTRACT

The aim of the present study was to test whether the contractile responses elicited by KCl in the rat mesenteric bed are coupled to the release of nitric oxide (NO). Contractions induced by 70 mM KCl were coincident with the release of NO to the perfusate. The in vitro exposure to the nitric oxide synthase (NOS) inhibitor L-N(omega)-nitro-L-arginine methyl ester, L-NAME (1-100 microM) potentiated the vascular responses to 70 mM KCl and, unexpectedly, increased the KCl-stimulated release of NO. Moreover, even after the chronic treatment with L-NAME (70 mg/kg/day during 4 weeks), the KCl-induced release of NO was not reduced, whereas the potentiation of contractile responses was indeed achieved. The possibility that NOS had not been completely inhibited under our experimental conditions can be precluded because NOS activity was significantly inhibited after both L-NAME treatments. After the in vitro treatment with 1 to 100 microM L-NAME, the inhibition of NOS was concentration-dependent (from 50% to 90%). With regard to the basal release of NO, the inhibition caused by L-NAME was not concentration-dependent and reached a maximum of 40%, suggesting that basal NO outflow is only partially dependent on NOS activity. An eventual enhancement of NOS activity caused by KCl was disregarded because the activity of this enzyme measured in homogenates from mesenteric beds perfused with 70 mM KCl was significantly reduced. On the other hand, endothelium removal, employed as a negative control, almost abolished NOS activity, whereas the incubation with the Ca(2+) ionophore A23187, employed as a positive control, induced an increase in NOS activity. It is concluded that in the mesenteric arterial bed of the rat, the contractile responses elicited by depolarization through KCl are coincident with a NOS-independent release of NO. This observation, which differs from the results obtained with noradrenaline, do not support the use of KCl as an alternative contractile agent whenever the participation of NO is under study.


Subject(s)
Mesentery/metabolism , Nitric Oxide Synthase/metabolism , Nitric Oxide/metabolism , Potassium Chloride/pharmacology , Adrenergic alpha-Antagonists/pharmacology , Animals , Enzyme Inhibitors/pharmacology , Luminescent Measurements , Male , Mesentery/drug effects , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Norepinephrine/metabolism , Perfusion , Prazosin/pharmacology , Rats , Rats, Sprague-Dawley
2.
Am J Physiol ; 277(3): H1027-35, 1999 09.
Article in English | MEDLINE | ID: mdl-10484425

ABSTRACT

To evaluate whether sympathetic activity induces nitric oxide (NO) production, we perfused the rat arterial mesenteric bed and measured luminally accessible norepinephrine (NE), NO, and cGMP before, during, and after stimulation of perivascular nerves. Electrical stimulation (1 min, 30 Hz) raised perfusion pressure by 97 +/- 7 mmHg, accompanied by peaks of 23 +/- 3 pmol NE, 445 +/- 48 pmol NO, and 1 pmol cGMP. Likewise, perfusion with 10 microM NE induced vasoconstriction coupled to increased NO and cGMP release. Electrically elicited NO release depended on stimulus frequency and duration. Endothelium denudation with saponin abolished the NO peak without changing NE release. Inhibition of NO synthase with 100 microM N(omega)-nitro-L-arginine reduced basal NO and cGMP release and blocked the electrically stimulated and exogenous NE-stimulated NO peak while enhancing vasoconstriction. Blocking either sympathetic exocytosis with 1 microM guanethidine or alpha1-adrenoceptors with 30 nM prazosin abolished the electrically evoked vasoconstriction and NO release. alpha2-Adrenoceptor blockade with 1 microM yohimbine reduced both vasoconstriction and NO peak while increasing NE release. In summary, sympathetically released NE induces vasoconstriction, which triggers a secondary release of endothelial NO coupled to cGMP production.


Subject(s)
Endothelium, Vascular/physiology , Mesenteric Arteries/physiology , Mesentery/blood supply , Nitric Oxide/physiology , Sympathetic Nervous System/physiology , Animals , Electric Stimulation , Enzyme Inhibitors/pharmacology , Mesenteric Arteries/innervation , Mesentery/innervation , Mesentery/physiology , Nitroarginine/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...