Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824612

ABSTRACT

DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.

2.
Viruses ; 14(5)2022 05 20.
Article in English | MEDLINE | ID: mdl-35632840

ABSTRACT

We have developed a Potato virus X (PVX)-based vector system compatible with the GoldenBraid 2.0 (GB) cloning strategy to transiently express heterologous proteins or peptides in plants for biotechnological purposes. This vector system consists of three domestication vectors carrying three GB parts-the cauliflower mosaic virus (CaMV) 35S promoter with PVX upstream of the second subgenomic promoter of the PVX coat protein (PVX CP SGP), nopaline synthase (NOS) terminator with PVX downstream of the first PVX CP SGP and the gene of interest (GOI). The full-length PVX clone carrying the sequence encoding a green fluorescent protein (GFP) as GOI was incorporated into the binary GB vector in a one-step reaction of three GB parts using the four-nucleotide GB standard syntax. We investigated whether the obtained vector named GFP/pGBX enables systemic PVX infection and expression of GFP in Nicotiana benthamiana plants. We show that this GB-compatible vector system can be used for simple and efficient assembly of PVX-based expression constructs and that it meets the current need for interchange of standard biological parts used in different expression systems.


Subject(s)
Potexvirus , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Plants , Potexvirus/genetics , Nicotiana
3.
Front Plant Sci ; 11: 522059, 2020.
Article in English | MEDLINE | ID: mdl-33193468

ABSTRACT

Methods for simple and fast assembly of exchangeable standard DNA parts using Type II S restriction enzymes are becoming more and more popular in plant synthetic and molecular biology. These methods enable routine construction of large and complex multigene DNA structures. Two available frameworks emphasize either high cloning capacity (Modular Cloning, MoClo) or simplicity (GoldenBraid, GB). Here we present a set of novel α-level plasmids compatible with the GB convention that extend the ability of GB to rapidly assemble more complex genetic constructs, while maintaining compatibility with all existing GB parts as well as most MoClo parts and GB modules. With the use of our new plasmids, standard GB parts can be assembled into complex assemblies containing 1, 5, 10 and up to theoretically 50 units in each successive level of infinite loop assembly. Assembled DNA constructs can be also combined with conventional binary GB-assemblies (1, 2, 4, 8… units). We demonstrate the usefulness of our framework on single tube assembly of replicating plant expression constructs based on the geminivirus Bean yellow dwarf virus (BeYDV).

4.
Plant Cell Rep ; 39(9): 1115-1127, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32333151

ABSTRACT

KEY MESSAGE: This is the first evidence that replicating vectors can be successfully used for transient protein expression in BY-2 plant cell packs. Transient recombinant protein expression in plants and recently also plant cell cultures are of increasing interest due to the speed, safety and scalability of the process. Currently, studies are focussing on the design of plant virus-derived vectors to achieve higher amounts of transiently expressed proteins in these systems. Here we designed and tested replicating single and multi-cassette vectors that combine elements for enhanced replication and hypertranslation, and assessed their ability to express and particularly co-express proteins by Agrobacterium-mediated transient expression in tobacco BY-2 plant cell packs. Substantial yields of green and red fluorescent proteins of up to ~ 700 ng/g fresh mass were detected in the plant cells along with position-dependent expression. This is the first evidence of the ability of replicating vectors to transiently express proteins in BY-2 plant cell packs.


Subject(s)
Genetic Vectors , Nicotiana/genetics , Recombinant Proteins/metabolism , Agrobacterium/genetics , Cell Culture Techniques , Green Fluorescent Proteins , Luminescent Proteins/genetics , Plant Cells/metabolism , Plants, Genetically Modified/genetics , Protein Engineering/methods , Recombinant Proteins/genetics , Replicon , Nicotiana/cytology , Red Fluorescent Protein
5.
Pak J Pharm Sci ; 28(4): 1281-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26142519

ABSTRACT

Calcium channel blockers represent a group of therapeutically important compounds that have found an application in treatment of systemic vascular resistance and arterial pressure, eventually angina pectoris. We studied possibility of application of a BY-2 cell model to evaluate the potential of newly prepared potential calcium channel blockers. In the preliminary experiment, toxicity of studied compounds was determined. In the next experiment, we evaluated possible protective effect of studied compounds on programmed cell death induced by hydrogen peroxide on the BY-2 cells. Calcium channel blocker lanthanum ions and imidazole, inhibitor of NAD(P)H oxidase (EC 1.6.3.1) that prevents reactive oxygen species formation and programmed cell death, were used as reference compounds to compare the effect of studied compounds. We studied changes in the cell viability and growth as well as markers of cell proliferation, levels of intracellular free calcium ions, reactive oxygen species, lipid peroxidation, and markers of programmed cell death, mitochondrial membrane potential and caspase-like activity. Late signs of programmed cell death (changes in nuclear architecture) were also evaluated. Our experiments revealed protective potential of studied compounds against programmed cell death induced by hydrogen peroxide and possibility of application of the BY-2 cell culture to evaluate pharmacological effects of studied compounds in preliminary tests.


Subject(s)
Calcium Channel Blockers/pharmacology , Apoptosis/drug effects , Calcium/metabolism , Cell Survival/drug effects , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism
6.
Plant Physiol Biochem ; 84: 78-86, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25240266

ABSTRACT

Juglone, 5-hydroxy-1,4-naphthoquinone, is the plant secondary metabolite with allelopathic properties, which was isolated especially from the plant species belonging to family Juglandaceae A. Rich. ex Kunth (walnut family). The mechanism of phytotoxic action of juglone was investigated on lettuce seedlings Lactuca sativa L. var. capitata L. cv. Merkurion by determining its effect at different levels. We have found that juglone inhibits mitosis (mitotic index 8.5 ± 0.6% for control versus 2.2 ± 0.9% for 250 µM juglone), changes mitotic phase index with accumulation of the cells in prophase (56.5 ± 2.6% for control versus 85.3 ± 5.0% for 250 µM juglone), and decreases meristematic activity in lettuce root tips (51.07 ± 3.62% for control versus 5.27 ± 2.29% for 250 µM juglone). In addition, juglone induced creation of reactive oxygen species and changed levels of reactive nitrogen species. Amount of malondialdehyde, a product of lipid peroxidation, increased from 24.0 ± 4.0 ng g(-1) FW for control to 55.5 ± 5.4 ng g(-1) FW for 250 µM juglone. We observed also changes in cellular structure, especially changes in the morphology of endoplasmic reticulum. Reactive oxygen species induced damage of plasma membrane. All these changes resulted in the disruption of the mitochondrial membrane potential, increase in free intracellular calcium ions, and DNA fragmentation and programmed cell death that was revealed by two methods, TUNEL test and DNA electrophoresis. The portion of TUNEL-positive cells increase from 0.96 ± 0.5% for control to 7.66 ± 1.5% for 250 µM juglone. Results of the study indicate complex mechanism of phytotoxic effect of juglone in lettuce root tips and may indicate mechanism of allelopathic activity of this compound.


Subject(s)
Lactuca/drug effects , Naphthoquinones/pharmacology , Plant Roots/drug effects , Seedlings/drug effects , Lactuca/metabolism , Meristem/drug effects , Meristem/metabolism , Mitosis/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...