Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cancer Immunol Res ; 12(2): 144-148, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38231158

ABSTRACT

From September 20 to 23, 2023, the Seventh International Cancer Immunotherapy Conference was hosted jointly by the Cancer Research Institute, the European Network for Cancer Immunotherapy (ENCI), and the American Association for Cancer Research (AACR) in Milan, Italy. The four-day event covered the latest advances in cancer immunology and immunotherapy.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Immunotherapy
2.
Int J Biol Sci ; 19(1): 156-166, 2023.
Article in English | MEDLINE | ID: mdl-36594095

ABSTRACT

Rationale: The αvß6- and αvß8-integrins, two cell-adhesion receptors upregulated in many tumors and involved in the activation of the latency associated peptide (LAP)/TGFß complex, represent potential targets for tumor imaging and therapy. We investigated the tumor-homing properties of a chromogranin A-derived peptide containing an RGDL motif followed by a chemically stapled alpha-helix (called "5a"), which selectively recognizes the LAP/TGFß complex-binding site of αvß6 and αvß8. Methods: Peptide 5a was labeled with IRDye 800CW (a near-infrared fluorescent dye) or with 18F-NOTA (a label for positron emission tomography (PET)); the integrin-binding properties of free peptide and conjugates were then investigated using purified αvß6/αvß8 integrins and various αvß6/αvß8 single - or double-positive cancer cells; tumor-homing, biodistribution and imaging properties of the conjugates were investigated in subcutaneous and orthotopic αvß6-positive carcinomas of the pancreas, and in mice bearing subcutaneous αvß8-positive prostate tumors. Results: In vitro studies showed that 5a can bind both integrins with high affinity and inhibits cell-mediated TGFß activation. The 5a-IRDye and 5a-NOTA conjugates could bind purified αvß6/αvß8 integrins with no loss of affinity compared to free peptide, and selectively recognized various αvß6/αvß8 single- or double-positive cancer cells, including cells from pancreatic carcinoma, melanoma, oral mucosa, bladder and prostate cancer. In vivo static and dynamic optical near-infrared and PET/CT imaging and biodistribution studies, performed in mice with subcutaneous and orthotopic αvß6-positive carcinomas of the pancreas, showed high target-specific uptake of fluorescence- and radio-labeled peptide by tumors and low non-specific uptake in other organs and tissues, except for excretory organs. Significant target-specific uptake of fluorescence-labeled peptide was also observed in mice bearing αvß8-positive prostate tumors. Conclusions: The results indicate that 5a can home to αvß6- and/or αvß8-positive tumors, suggesting that this peptide can be exploited as a ligand for delivering imaging or anticancer agents to αvß6/αvß8 single- or double-positive tumors, or as a tumor-homing inhibitor of these TGFß activators.


Subject(s)
Carcinoma , Pancreatic Neoplasms , Prostatic Neoplasms , Male , Animals , Mice , Humans , Chromogranin A/metabolism , Positron Emission Tomography Computed Tomography , Tissue Distribution , Peptides/chemistry , Integrins/metabolism , Transforming Growth Factor beta/metabolism
3.
Curr Opin Immunol ; 74: 53-59, 2022 02.
Article in English | MEDLINE | ID: mdl-34743069

ABSTRACT

Adoptive T cell therapy (ACT) with tumor-reactive lymphocytes can overcome the immune desert of poorly immunogenic tumors and instruct tumor eradication. Several hurdles limit the efficacy of this strategy against solid tumor including, but not limited to, sub optimal T cell engraftment, tumor infiltration, poor tumor antigenicity/immunogenicity, and immunosuppressive or resistance mechanisms. Recent advances indicate that concomitant treatments can be set in place to offset such barriers. In this review, we highlight the beneficial effects of combining ACT with conventional chemo and/or radiotherapy. While originally classified as immunosuppressive, these methodologies can also promote the engraftment of ACT products, immunogenic cell death, and the reprogramming of more favorable microenvironments. Data indicates that systemic and local chemo/radiotherapy regimens promote intratumoral cytokine and chemokine upregulation, tumor antigen presentation and cross presentation, infiltration and in situ T cells reactivation. Here we review the most recent contributions supporting these notions and discuss further developments.


Subject(s)
Neoplasms , Tumor Microenvironment , Antigens, Neoplasm , Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive/methods , Neoplasms/metabolism , T-Lymphocytes
4.
Commun Biol ; 4(1): 763, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155338

ABSTRACT

Mechanical forces control cell behavior, including cancer progression. Cells sense forces through actomyosin to activate YAP. However, the regulators of F-actin dynamics playing relevant roles during mechanostransduction in vitro and in vivo remain poorly characterized. Here we identify the Fascin1 F-actin bundling protein as a factor that sustains YAP activation in response to ECM mechanical cues. This is conserved in the mouse liver, where Fascin1 regulates YAP-dependent phenotypes, and in human cholangiocarcinoma cell lines. Moreover, this is relevant for liver tumorigenesis, because Fascin1 is required in the AKT/NICD cholangiocarcinogenesis model and it is sufficient, together with AKT, to induce cholangiocellular lesions in mice, recapitulating genetic YAP requirements. In support of these findings, Fascin1 expression in human intrahepatic cholangiocarcinomas strongly correlates with poor patient prognosis. We propose that Fascin1 represents a pro-oncogenic mechanism that can be exploited during intrahepatic cholangiocarcinoma development to overcome a mechanical tumor-suppressive environment.


Subject(s)
Bile Duct Neoplasms/etiology , Carrier Proteins/physiology , Cell Cycle Proteins/physiology , Cholangiocarcinoma/etiology , Mechanotransduction, Cellular/physiology , Microfilament Proteins/physiology , Transcription Factors/physiology , Actin-Related Protein 2-3 Complex/physiology , Animals , CapZ Actin Capping Protein/physiology , Cell Adhesion Molecules/physiology , Cell Line, Tumor , Female , Humans , Male , Mice , Phosphoproteins/physiology
5.
Nat Cell Biol ; 22(3): 289-296, 2020 03.
Article in English | MEDLINE | ID: mdl-32094692

ABSTRACT

The process of metastasis is complex1. In breast cancer, there are frequently long time intervals between cells leaving the primary tumour and growth of overt metastases2,3. Reasons for disease indolence and subsequent transition back to aggressive growth include interactions with myeloid and fibroblastic cells in the tumour microenvironment and ongoing immune surveillance4-6. However, the signals that cause actively growing cells to enter an indolent state, thereby enabling them to survive for extended periods of time, are not well understood. Here we reveal how the behaviour of indolent breast cancer cells in the lung is determined by their interactions with alveolar epithelial cells, in particular alveolar type 1 cells. This promotes the formation of fibronectin fibrils by indolent cells that drive integrin-dependent pro-survival signals. Combined in vivo RNA sequencing and drop-out screening identified secreted frizzled-related protein 2 (SFRP2) as a key mediator of this interaction. Sfrp2 is induced in breast cancer cells by signals from lung epithelial cells and promotes fibronectin fibril formation and survival, whereas blockade of Sfrp2 expression reduces the burden of indolent disease.


Subject(s)
Alveolar Epithelial Cells/physiology , Breast Neoplasms/pathology , Membrane Proteins/physiology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Neoplasm Metastasis , Proto-Oncogene Proteins pp60(c-src)/physiology , Signal Transduction
6.
J Cell Sci ; 133(2)2020 01 29.
Article in English | MEDLINE | ID: mdl-31996398

ABSTRACT

YAP and TAZ proteins are transcriptional coactivators encoded by paralogous genes, which shuttle between the cytoplasm and the nucleus in response to multiple inputs, including the Hippo pathway. In the nucleus, they pair with DNA-binding factors of the TEAD family to regulate gene expression. Nuclear YAP/TAZ promote cell proliferation, organ overgrowth, survival to stress and dedifferentiation of post-mitotic cells into their respective tissue progenitors. YAP/TAZ are required for growth of embryonic tissues, wound healing and organ regeneration, where they are activated by cell-intrinsic and extrinsic cues. Surprisingly, this activity is dispensable in many adult self-renewing tissues, where YAP/TAZ are constantly kept in check. YAP/TAZ lay at the center of a complex regulatory network including cell-autonomous factors but also cell- and tissue-level structural features such as the mechanical properties of the cell microenvironment, the establishment of cell-cell junctions and of basolateral tissue polarity. Enhanced levels and activity of YAP/TAZ are observed in many cancers, where they sustain tumor growth, drug resistance and malignancy. In this Cell Science at a Glance article and the accompanying poster, we review the biological functions of YAP/TAZ and their regulatory mechanisms, and highlight their position at the center of a complex signaling network.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/genetics , Acyltransferases , Animals , Humans , YAP-Signaling Proteins
7.
J Hepatol ; 71(1): 130-142, 2019 07.
Article in English | MEDLINE | ID: mdl-30878582

ABSTRACT

BACKGROUND & AIMS: In vitro, cell function can be potently regulated by the mechanical properties of cells and of their microenvironment. Cells measure these features by developing forces via their actomyosin cytoskeleton, and respond accordingly by regulating intracellular pathways, including the transcriptional coactivators YAP/TAZ. Whether mechanical cues are relevant for in vivo regulation of adult organ homeostasis, and whether this occurs through YAP/TAZ, remains largely unaddressed. METHODS: We developed Capzb conditional knockout mice and obtained primary fibroblasts to characterize the role of CAPZ in vitro. In vivo functional analyses were carried out by inducing Capzb inactivation in adult hepatocytes, manipulating YAP/Hippo activity by hydrodynamic tail vein injections, and treating mice with the ROCK inhibitor, fasudil. RESULTS: We found that the F-actin capping protein CAPZ restrains actomyosin contractility: Capzb inactivation alters stress fiber and focal adhesion dynamics leading to enhanced myosin activity, increased traction forces, and increased liver stiffness. In vitro, this rescues YAP from inhibition by a small cellular geometry; in vivo, it induces YAP activation in parallel to the Hippo pathway, causing extensive hepatocyte proliferation and leading to striking organ overgrowth. Moreover, Capzb is required for the maintenance of the differentiated hepatocyte state, for metabolic zonation, and for gluconeogenesis. In keeping with changes in tissue mechanics, inhibition of the contractility regulator ROCK, or deletion of the Yap1 mechanotransducer, reverse the phenotypes emerging in Capzb-null livers. CONCLUSIONS: These results indicate a previously unsuspected role for CAPZ in tuning the mechanical properties of cells and tissues, which is required in hepatocytes for the maintenance of the differentiated state and to regulate organ size. More generally, it indicates for the first time that mechanotransduction has a physiological role in maintaining liver homeostasis in mammals. LAY SUMMARY: The mechanical properties of cells and tissues (i.e. whether they are soft or stiff) are thought to be important regulators of cell behavior. Herein, we found that inactivation of the protein CAPZ alters the mechanical properties of cells and liver tissues, leading to YAP hyperactivation. In turn, this profoundly alters liver physiology, causing organ overgrowth, defects in liver cell differentiation and metabolism. These results reveal a previously uncharacterized role for mechanical signals in the maintenance of adult liver homeostasis.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , CapZ Actin Capping Protein/metabolism , Cell Cycle Proteins/metabolism , Hepatocytes/physiology , Liver , Mechanotransduction, Cellular/physiology , Protein Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Elasticity , Hippo Signaling Pathway , Humans , Intracellular Signaling Peptides and Proteins/physiology , Liver/growth & development , Liver/metabolism , Liver/physiopathology , Mice , Mice, Knockout , Signal Transduction , YAP-Signaling Proteins
8.
Nat Cell Biol ; 21(3): 338-347, 2019 03.
Article in English | MEDLINE | ID: mdl-30718857

ABSTRACT

Extracellular matrix (ECM) mechanical cues have powerful effects on cell proliferation, differentiation and death. Here, starting from an unbiased metabolomics approach, we identify synthesis of neutral lipids as a general response to mechanical signals delivered by cell-matrix adhesions. Extracellular physical cues reverberate on the mechanical properties of the Golgi apparatus and regulate the Lipin-1 phosphatidate phosphatase. Conditions of reduced actomyosin contractility lead to inhibition of Lipin-1, accumulation of SCAP/SREBP to the Golgi apparatus and activation of SREBP transcription factors, in turn driving lipid synthesis and accumulation. This occurs independently of YAP/TAZ, mTOR and AMPK, and in parallel to feedback control by sterols. Regulation of SREBP can be observed in a stiffened diseased tissue, and contributes to the pro-survival activity of ROCK inhibitors in pluripotent stem cells. We thus identify a general mechanism centered on Lipin-1 and SREBP that links the physical cell microenvironment to a key metabolic pathway.


Subject(s)
Extracellular Matrix/metabolism , Lipid Metabolism , Phosphatidate Phosphatase/metabolism , Sterol Regulatory Element Binding Proteins/metabolism , Cell Differentiation , Cell Line , Cell Line, Tumor , Cell Proliferation , Cell-Matrix Junctions/metabolism , Cellular Microenvironment , Cues , Golgi Apparatus/metabolism , Humans , Metabolomics/methods , Signal Transduction
9.
EMBO J ; 37(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29650681

ABSTRACT

YAP/TAZ, downstream transducers of the Hippo pathway, are powerful regulators of cancer growth. How these factors control proliferation remains poorly defined. Here, we found that YAP/TAZ directly regulate expression of key enzymes involved in deoxynucleotide biosynthesis and maintain dNTP precursor pools in human cancer cells. Regulation of deoxynucleotide metabolism is required for YAP-induced cell growth and underlies the resistance of YAP-addicted cells to chemotherapeutics targeting dNTP synthesis. During RAS-induced senescence, YAP/TAZ bypass RAS-mediated inhibition of nucleotide metabolism and control senescence. Endogenous YAP/TAZ targets and signatures are inhibited by RAS/MEK1 during senescence, and depletion of YAP/TAZ is sufficient to cause senescence-associated phenotypes, suggesting a role for YAP/TAZ in suppression of senescence. Finally, mechanical cues, such as ECM stiffness and cell geometry, regulate senescence in a YAP-dependent manner. This study indicates that YAP/TAZ couples cell proliferation with a metabolism suited for DNA replication and facilitates escape from oncogene-induced senescence. We speculate that this activity might be relevant during the initial phases of tumour progression or during experimental stem cell reprogramming induced by YAP.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Intracellular Signaling Peptides and Proteins/genetics , Neoplasms/genetics , Nucleotides/biosynthesis , Phosphoproteins/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cellular Reprogramming/genetics , Cellular Senescence/genetics , Humans , Neoplasms/pathology , Nucleotides/genetics , Signal Transduction/genetics , Stem Cells/metabolism , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
10.
Trends Cell Biol ; 26(4): 289-299, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26750334

ABSTRACT

Metabolism is a fundamental cellular function that can be reprogrammed by signaling pathways and oncogenes to meet cellular requirements. An emerging paradigm is that signaling and transcriptional networks can be in turn regulated by metabolism, allowing cells to coordinate their metabolism and behavior in an integrated manner. The activity of the YAP/TAZ transcriptional coactivators, downstream transducers of the Hippo cascade and powerful pro-oncogenic factors, was recently found to be regulated by metabolic pathways, such as aerobic glycolysis and mevalonate synthesis, and by the nutrient-sensing LKB1-AMPK and TSC-mTOR pathways. We discuss here current data linking YAP/TAZ to metabolism and suggest how this coupling might coordinate nutrient availability with genetic programs that sustain tissue growth, neoplastic cell proliferation, and tumor malignancy.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mevalonic Acid/metabolism , Phosphoproteins/genetics , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Feedback, Physiological , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , TEA Domain Transcription Factors , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Trans-Activators , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
11.
EMBO J ; 34(10): 1349-70, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25796446

ABSTRACT

Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ.


Subject(s)
Bacteria, Aerobic/metabolism , Transcription Factors/metabolism , Acyltransferases , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Chromatin Immunoprecipitation , Drosophila , Glycolysis/genetics , Glycolysis/physiology , Humans , Immunoprecipitation , Phosphoproteins/metabolism , Real-Time Polymerase Chain Reaction , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...