Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet B Neuropsychiatr Genet ; 150B(2): 262-70, 2009 Mar 05.
Article in English | MEDLINE | ID: mdl-18563710

ABSTRACT

This report describes a study focused on the relationship between CGG repeat length, FMRP, mRNA levels and cognitive functioning in premutation carriers (PM) carriers of Fragile X Syndrome (FXS). We studied 60 females-43 with PM and 17 with normal (N) alleles-from 25 FXS Spanish families. The Wechsler scales were administered to all subjects and new blood samples and hair roots were taken to study mRNA and FMRP levels. Using lowess curves together with segmented models we showed that within the premutation range, IQ scores tend to decrease when the number of CGG repeats increases and the FMRP values decrease. Furthermore, we discovered cut-off points in the molecular variables that seem to change the probability of having some cognitive impairment. Specifically, for those PM females in the upper premutation range (CGG > or = 100) and with FMRP expression < 60% in hair roots, a 10% decrement of FMRP expression represents a significant decrease in IQ scores of about six points, which is more evident for Full-Scale IQ (P-value = 0.035) and Performance IQ (P-value = 0.045) than for Verbal IQ (P-value = 0.074). On the contrary, we did not find any significant correlation between FMR1 mRNA levels and the IQ scores, probably due to the fact that mRNA levels were measured in blood. In conclusion, our findings suggest that the PM can have some effect on cognitive ability in female carriers, although these effects may be subtle. In these cases, it would be advisable to carry out a hair root analysis of FMRP.


Subject(s)
Cognition Disorders/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Trinucleotide Repeats/genetics , Adolescent , Adult , Aged , Alleles , Child , Chromosomes, Human, X/genetics , Female , Fragile X Syndrome/psychology , Heterozygote , Humans , Linear Models , Middle Aged , Mutation/genetics , Young Adult
2.
Menopause ; 15(5): 945-9, 2008.
Article in English | MEDLINE | ID: mdl-18427356

ABSTRACT

OBJECTIVE: To study three molecular parameters (number of CGG repeats, X-inactivation ratio, and expression of FMR1 mRNA) in premutation carriers of fragile X syndrome with and without premature ovarian failure (POF) to find differences between these two groups that could be useful in reproductive counseling. DESIGN: A retrospective clinical and molecular genetic study of 42 known premutation carriers of fragile X syndrome aged 40 years or older, 25 with POF and 17 without. A blood sample to obtain mRNA was taken from all of them. They all lived in five autonomous communities in northern Spain. RESULTS: Although the relationship among mRNA levels, X-inactivation ratio, and CGG repeats seems to be similar both in women with POF and in those without: in women with POF, the effect of the CGG repeats on the mRNA levels was statistically significant (P = 0.0437), but in women without POF, it was not (P = 0.0724). Moreover, we confirmed previous results on the nonlinear association between CGG repeat number and the manifestation of POF, showing that the likelihood of having POF was significantly higher with fewer than 100 CGG repeats compared with 100 or more CGG repeats (odds ratio = 13.09, P = 0.0240). CONCLUSIONS: Our present work suggests that mRNA and X-inactivation studies in blood are not relevant in predicting POF in female premutation carriers of fragile X syndrome. However, having a permutation of fewer than 100 repeats could represent a significant risk of POF.


Subject(s)
DNA-Binding Proteins/genetics , Fragile X Mental Retardation Protein/genetics , Primary Ovarian Insufficiency/genetics , RNA, Messenger/genetics , Trinucleotide Repeat Expansion/genetics , Adult , Case-Control Studies , DNA Mutational Analysis , Female , Humans , Middle Aged , Molecular Sequence Data , Retrospective Studies , Risk Assessment , Risk Factors , Spain , X Chromosome Inactivation/genetics
3.
RNA ; 13(5): 756-62, 2007 May.
Article in English | MEDLINE | ID: mdl-17449730

ABSTRACT

Fragile X syndrome is caused by the absence or reduction of the fragile X mental retardation protein (FMRP) because FMR1 gene expression is reduced. Alleles with repeat sizes of 55-200 are classified as premutations, and it has been demonstrated that FMR1 expression is elevated in the premutation range. However, the majority of the studies reported were performed in males. We studied FMR1 expression in 100 female fragile X family members from the northern region of Spain using quantitative (fluorescence) real-time polymerase chain reaction. Of these 100 women, 19 had normal alleles, 19 were full mutation carriers, and 62 were premutation carriers. After confirming differences between the three groups of females, and increased levels of the FMR1 transcript among premutation carriers, we found that the relationship between mRNA levels and repeat size is nonlinear. These results were obtained using a novel methodology that, based on the size of the CGG repeats, allows us to find out the most probable threshold from which the relationship between CGG repeat number and mRNA levels changes. Using this approach, a significant positive correlation between CGG repeats and total mRNA levels has been found in the premutation range <100 CGG, but this correlation diminishes from 100 onward. However, when correcting by the X inactivation ratio, mRNA levels increase as the number of CGG repeats increases, and this increase is highly significant over 100 CGG. We suggest that due to skewed X inactivation, mRNA levels tend to normalize in females when the number of CGG repeats increases.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Heterozygote , Mutation , Female , Humans , Linear Models , RNA, Messenger/genetics , Trinucleotide Repeats , X Chromosome Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL
...