Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 727: 87-98, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24485889

ABSTRACT

The present study investigates the analgesic effect of minocycline, a semi-synthetic tetracycline antibiotic, in a rat model of inflammation-induced visceral pain. Inflammation was induced in male rats by intracolonic administration of tri-nitrobenzenesulphonic acid (TNBS). Visceral hyperalgesia was assessed by comparing the viscero-motor response (VMR) to graded colorectal distension (CRD) prior and post 7 days after TNBS treatment. Electrophysiology recordings from CRD-sensitive pelvic nerve afferents (PNA) and lumbo-sacral (LS) spinal neurons were performed in naïve and inflamed rats. Colonic inflammation produced visceral hyperalgesia characterized by increase in the VMRs to CRD accompanied with simultaneous activation of microglia in the spinal cord and satellite glial cells (SGCs) in the dorsal root ganglions (DRGs). Selectively inhibiting the glial activation following inflammation by araC (Arabinofuranosyl Cytidine) prevented the development of visceral hyperalgesia. Intrathecal minocycline significantly attenuated the VMR to CRD in inflamed rats, whereas systemic minocycline produced a delayed effect. In electrophysiology experiments, minocycline significantly attenuated the mechanotransduction of CRD-sensitive PNAs and the responses of CRD-sensitive LS spinal neurons in TNBS-treated rats. While the spinal effect of minocycline was observed within 5min of administration, systemic injection of the drug produced a delayed effect (60min) in inflamed rats. Interestingly, minocycline did not exhibit analgesic effect in naïve, non-inflamed rats. The results demonstrate that intrathecal injection of minocycline can effectively attenuate inflammation-induced visceral hyperalgesia. Minocycline might as well act on neuronal targets in the spinal cord of inflamed rats, in addition to the widely reported glial inhibitory action to produce analgesia.


Subject(s)
Analgesics/pharmacology , Colitis/drug therapy , Colon/innervation , Hyperalgesia/prevention & control , Minocycline/pharmacology , Spinal Cord/drug effects , Visceral Pain/prevention & control , Analgesics/administration & dosage , Animals , Behavior, Animal/drug effects , Colitis/chemically induced , Colitis/physiopathology , Disease Models, Animal , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiopathology , Hyperalgesia/chemically induced , Hyperalgesia/physiopathology , Injections, Intraperitoneal , Injections, Spinal , Male , Mechanotransduction, Cellular/drug effects , Microglia/drug effects , Minocycline/administration & dosage , Pain Perception/drug effects , Pressure , Rats, Sprague-Dawley , Spinal Cord/physiopathology , Time Factors , Trinitrobenzenesulfonic Acid , Visceral Pain/chemically induced , Visceral Pain/physiopathology
2.
J Bacteriol ; 194(14): 3678-88, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22582276

ABSTRACT

Cells of Flavobacterium johnsoniae move rapidly over surfaces by a process known as gliding motility. Gld proteins are thought to comprise the motor that propels the cell surface adhesin SprB. Cells with mutations in sprB are partially defective in motility and are also resistant to some bacteriophages. Transposon mutagenesis of a strain carrying a deletion spanning sprB identified eight mutants that were resistant to additional phages and exhibited reduced motility. Four of the mutants had transposon insertions in remA, which encodes a cell surface protein that has a lectin domain and appears to interact with polysaccharides. Three other genes identified in this screen (remC, wza, and wzc) encode proteins predicted to be involved in polysaccharide synthesis and secretion. Myc-tagged versions of RemA localized to the cell surface and were propelled rapidly along the cell at speeds of 1 to 2 µm/s. Deletion of gldN and gldO, which encode components of a bacteroidete protein secretion system, blocked the transport of RemA to the cell surface. Overexpression of RemA resulted in the formation of cell aggregates that were dispersed by the addition of galactose or rhamnose. Cells lacking RemC, Wza, and Wzc failed to aggregate. Cells of a remC mutant and cells of a remA mutant, neither of which formed aggregates in isolation, aggregated when they were mixed together, suggesting that polysaccharides secreted by one cell may interact with RemA on another cell. Fluorescently labeled lectin Ricinus communis agglutinin I detected polysaccharides secreted by F. johnsoniae. The polysaccharides bound to cells expressing RemA and were rapidly propelled on the cell surface. RemA appears to be a mobile cell surface adhesin, and secreted polysaccharides may interact with the lectin domain of RemA and enhance motility.


Subject(s)
Bacterial Proteins/metabolism , Flavobacterium/metabolism , Gene Expression Regulation, Bacterial/physiology , Lectins/metabolism , Movement/physiology , Bacterial Adhesion , Bacterial Proteins/genetics , Cloning, Molecular , Flavobacterium/genetics , Genotype , Lectins/genetics , Membrane Proteins , Mutation
3.
J Bacteriol ; 193(3): 599-610, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21131497

ABSTRACT

Cells of Flavobacterium johnsoniae move rapidly over surfaces by a process known as gliding motility. Gld proteins are thought to comprise the gliding motor that propels cell surface adhesins, such as the 669-kDa SprB. A novel protein secretion apparatus called the Por secretion system (PorSS) is required for assembly of SprB on the cell surface. Genetic and molecular analyses revealed that sprB is part of a seven-gene operon spanning 29.3 kbp of DNA. In addition to sprB, three other genes of this operon (sprC, sprD, and sprF) are involved in gliding. Mutations in sprB, sprC, sprD, and sprF resulted in cells that failed to form spreading colonies on agar but that exhibited some motility on glass in wet mounts. SprF exhibits some similarity to Porphyromonas gingivalis PorP, which is required for secretion of gingipain protease virulence factors via the P. gingivalis PorSS. F. johnsoniae sprF mutants produced SprB protein but were defective in localization of SprB to the cell surface, suggesting a role for SprF in secretion of SprB. The F. johnsoniae PorSS is involved in secretion of extracellular chitinase in addition to its role in secretion of SprB. SprF was not needed for chitinase secretion and may be specifically required for SprB secretion by the PorSS. Cells with nonpolar mutations in sprC or sprD produced and secreted SprB and propelled it rapidly along the cell surface. Multiple paralogs of sprB, sprC, sprD, and sprF are present in the genome, which may explain why mutations in sprB, sprC, sprD, and sprF do not result in complete loss of motility and suggests the possibility that semiredundant SprB-like adhesins may allow movement of cells over different surfaces.


Subject(s)
Bacterial Proteins/genetics , Flavobacterium/genetics , Locomotion , Operon , Bacterial Proteins/metabolism , Flavobacterium/physiology , Gene Deletion , Gene Order , Mutation , Sequence Homology
4.
J Bacteriol ; 192(5): 1201-11, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20038590

ABSTRACT

Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces. Mutations in gldN cause a partial defect in gliding. A novel bacteriophage selection strategy was used to aid construction of a strain with a deletion spanning gldN and the closely related gene gldO in an otherwise wild-type F. johnsoniae UW101 background. Bacteriophage transduction was used to move a gldN mutation into F. johnsoniae UW101 to allow phenotypic comparison with the gldNO deletion mutant. Cells of the gldN mutant formed nonspreading colonies on agar but retained some ability to glide in wet mounts. In contrast, cells of the gldNO deletion mutant were completely nonmotile, indicating that cells require GldN, or the GldN-like protein GldO, to glide. Recent results suggest that Porphyromonas gingivalis PorN, which is similar in sequence to GldN, has a role in protein secretion across the outer membrane. Cells of the F. johnsoniae gldNO deletion mutant were defective in localization of the motility protein SprB to the cell surface, suggesting that GldN may be involved in secretion of components of the motility machinery. Cells of the gldNO deletion mutant were also deficient in chitin utilization and were resistant to infection by bacteriophages, phenotypes that may also be related to defects in protein secretion.


Subject(s)
Bacterial Proteins/metabolism , Flavobacterium/physiology , Locomotion , Bacterial Proteins/genetics , Bacteriophages/growth & development , Chitin/metabolism , Gene Deletion , Gene Order , Genes, Bacterial , Genetics, Microbial/methods , Porphyromonas gingivalis/genetics , Protein Interaction Mapping , Selection, Genetic , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...