Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chem Sci ; 9(15): 3694-3703, 2018 Apr 21.
Article in English | MEDLINE | ID: mdl-29780500

ABSTRACT

Förster Resonance Energy Transfer (FRET) is the incoherent transfer of an electronic excitation from a donor fluorophore to a nearby acceptor. FRET has been applied as a probe of local chromophore environments and distances on the nanoscale by extrapolating transfer efficiencies from standard experimental parameters, such as fluorescence intensities or lifetimes. Competition from nonradiative relaxation processes is often assumed to be constant in these extrapolations, but in actuality, this competition depends on the donor and acceptor environments and can, therefore, be affected by conformational changes. To study the effects of nonradiative relaxation on FRET dynamics, we perform two-dimensional electronic spectroscopy (2DES) on a pair of azaboraindacene (BODIPY) dyes, attached to opposite arms of a resorcin[4]arene cavitand. Temperature-induced switching between two equilibrium conformations, vase at 294 K to kite at 193 K, increases the donor-acceptor distance from 0.5 nm to 3 nm, affecting both FRET efficiency and nonradiative relaxation. By disentangling different dynamics based on lifetimes extracted from a series of 2D spectra, we independently observe nonradiative relaxation, FRET, and residual fluorescence from the donor in both vase to kite conformations. We observe changes in both FRET rate and nonradiative relaxation when the molecule switches from vase to kite, and measure a significantly greater difference in transfer efficiency between conformations than would be determined by standard lifetime-based measurements. These observations show that changes in competing nonradiative processes must be taken into account when highly accurate measurements of FRET efficiency are desired.

2.
ACS Nano ; 11(8): 7925-7937, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28745872

ABSTRACT

Stretchable form factors enable electronic devices to conform to irregular 3D structures, including soft and moving entities. Intrinsically stretchable devices have potential advantages of high surface coverage of active devices, improved durability, and reduced processing costs. This work describes intrinsically stretchable transistors composed of single-walled carbon nanotube (SWNT) electrodes and semiconductors and a dielectric that consists of a nonpolar elastomer. The use of a nonpolar elastomer dielectric enabled hysteresis-free device characteristics. Compared to devices on SiO2 dielectrics, stretchable devices with nonpolar dielectrics showed lower mobility in ambient conditions because of the absence of doping from water. The effect of a SWNT band gap on device characteristics was investigated by using different SWNT sources as the semiconductor. Large-band-gap SWNTs exhibited trap-limited behavior caused by the low capacitance of the dielectric. In contrast, high-current devices based on SWNTs with smaller band gaps were more limited by contact resistance. Of the tested SWNT sources, SWNTs with a maximum diameter of 1.5 nm performed the best, with a mobility of 15.4 cm2/Vs and an on/off ratio >103 for stretchable transistors. Large-band-gap devices showed increased sensitivity to strain because of a pronounced dependence on the dielectric thickness, whereas contact-limited devices showed substantially less strain dependence.

3.
ACS Nano ; 11(6): 5660-5669, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28528552

ABSTRACT

Selective extraction of semiconducting carbon nanotubes is a key step in the production of high-performance, solution-processed electronics. Here, we describe the ability of a supramolecular sorting polymer to selectively disperse semiconducting carbon nanotubes from five commercial sources with diameters ranging from 0.7 to 2.2 nm. The sorting purity of the largest-diameter nanotubes (1.4 to 2.2 nm; from Tuball) was confirmed by short channel measurements to be 97.5%. Removing the sorting polymer by acid-induced disassembly increased the transistor mobility by 94 and 24% for medium-diameter and large-diameter carbon nanotubes, respectively. Among the tested single-walled nanotube sources, the highest transistor performance of 61 cm2/V·s and on/off ratio >104 were realized with arc discharge carbon nanotubes with a diameter range from 1.2 to 1.7 nm. The length and quality of nanotubes sorted from different sources is compared using measurements from atomic force microscopy and Raman spectroscopy. The transistor mobility is found to correlate with the G/D ratio extracted from the Raman spectra.

4.
Acc Chem Res ; 50(4): 1096-1104, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28358486

ABSTRACT

Electronics that are soft, conformal, and stretchable are highly desirable for wearable electronics, prosthetics, and robotics. Among the various available electronic materials, single walled carbon nanotubes (SWNTs) and their network have exhibited high mechanical flexibility and stretchability, along with comparable electrical performance to traditional rigid materials, e.g. polysilicon and metal oxides. Unfortunately, SWNTs produced en masse contain a mixture of semiconducting (s-) and metallic (m-) SWNTs, rendering them unsuitable for electronic applications. Moreover, the poor solubility of SWNTs requires the introduction of insulating surfactants to properly disperse them into individual tubes for device fabrication. Compared to other SWNT dispersion and separation methods, e.g., DNA wrapping, density gradient ultracentrifugation, and gel chromatography, polymer wrapping can selectively disperse s-SWNTs with high selectivity (>99.7%), high concentration (>0.1 mg/mL), and high yield (>20%). In addition, this method only requires simple sonication and centrifuge equipment with short processing time down to 1 h. Despite these advantages, the polymer wrapping method still faces two major issues: (i) The purified s-SWNTs usually retain a substantial amount of polymers on their surface even after thorough rinsing. The low conductivity of the residual polymers impedes the charge transport in SWNT networks. (ii) Conjugated polymers used for SWNT wrapping are expensive. Their prices ($100-1000/g) are comparable or even higher than those of SWNTs ($10-300/g). These utilized conjugated polymers represent a large portion of the overall separation cost. In this Account, we summarize recent progresses in polymer design for selective dispersion and separation of SWNTs. We focus particularly on removable and/or recyclable polymers that enable low-cost and scalable separation methods. First, different separation methods are compared to show the advantages of the polymer wrapping methods. In specific, we compare different characterization methods used for purity evaluation. For s-SWNTs with high purity, i.e., >99%, short-channel (smaller than SWNT length) electrical measurement is more reliable than optical methods. Second, possible sorting mechanism and molecular design strategies are discussed. Polymer parameters such as backbone design and side chain engineering affect the polymer-SWNT interactions, leading to different dispersion concentration and selectivity. To address the above-mentioned limiting factors in both polymer contamination and cost issues, we describe two important polymer removal and cycling approaches: (i) changing polymer wrapping conformation to release SWNTs; (ii) depolymerization of conjugated polymer into small molecular units that have less affinity toward SWNTs. These methods allow the removal and recycling of the wrapping polymers, thus providing low-cost and clean s-SWNTs. Third, we discuss various applications of polymer-sorted s-SWNTs, including flexible/stretchable thin-film transistors, thermoelectric devices, and solar cells. In these applications, polymer-sorted s-SWNTs and their networks have exhibited good processability, attractive mechanical properties, and high electrical performance. An increasing number of studies have shown that the removable polymer approaches can completely remove polymer residues in SWNT networks and lead to enhanced charge carrier mobility, higher conductivity, and better heterojunction interface.

5.
J Phys Chem Lett ; 7(13): 2470-7, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27300355

ABSTRACT

The development of semiquinone-based resorcin[4]arene cavitands expands the toolbox of switchable molecular grippers by introducing the first paramagnetic representatives. The semiquinone (SQ) states were generated electrochemically, chemically, and photochemically. We analyzed their electronic, conformational, and binding properties by cyclic voltammetry, ultraviolet/visible (UV/vis) spectroelectrochemistry, electron paramagnetic resonance (EPR) and transient absorption spectroscopy, in conjunction with density functional theory (DFT) calculations. The utility of UV/vis spectroelectrochemistry and EPR spectroscopy in evaluating the conformational features of resorcin[4]arene cavitands is demonstrated. Guest binding properties were found to be enhanced in the SQ state as compared to the quinone (Q) or the hydroquinone (HQ) states of the cavitands. Thus, these paramagnetic SQ intermediates open the way to six-state redox switches provided by two conformations (open and closed) in three redox states (Q, SQ, and HQ) possessing distinct binding ability. The switchable magnetic properties of these molecular grippers and their responsiveness to electrical stimuli has the potential for development of efficient molecular devices.

6.
J Am Chem Soc ; 137(13): 4328-31, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25815604

ABSTRACT

Semiconducting, single-walled carbon nanotubes (SWNTs) are promising candidates for applications in thin-film transistors, solar cells, and biological imaging. To harness their full potential, however, it is necessary to separate the semiconducting from the metallic SWNTs present in the as-synthesized SWNT mixture. While various polymers are able to selectively disperse semiconducting SWNTs, the subsequent removal of the polymer is challenging. However, many applications require semiconducting SWNTs in their pure form. Toward this goal, we have designed a 2-ureido-6[1H]-pyrimidinone (UPy)-based H-bonded supramolecular polymer that can selectively disperse semiconducting SWNTs. The dispersion purity is inversely related to the dispersion yield. In contrast to conventional polymers, the polymer described herein was shown to disassemble into monomeric units upon addition of an H-bond-disrupting agent, enabling isolation of dispersant-free, semiconducting SWNTs.

7.
Acc Chem Res ; 47(7): 2096-105, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24814219

ABSTRACT

CONSPECTUS: Within the framework of miniaturization of electromechanical devices, the development of a redox-switchable molecular gripper as a tool for nanorobotics is appealing both from an academic and from a practical perspective. Such a tool should be able to controllably grab a molecular cargo, translocate it over considerable distances and time scales, and release it. Resorcin[4]arene cavitands seem to be an ideal platform for the development of molecular grippers due to their ability to adopt two spatially well-defined conformations: an expanded kite and a contracted vase. Furthermore, they possess "legs" for functionalization and attachment to metal surfaces. While changes in temperature, pH, and metal-ion concentration were known to induce conformational switching, redox-switchable cavitands remained a challenge. In this Account, we describe our efforts toward the development of a new class of resorcin[4]arene cavitands that are redox-switchable. First, we introduced the naphthoquinone moiety as a redox-active wall component and showed that cavitands containing four quinone walls strongly prefer the open kite conformation in both the quinone and hydroquinone redox states, while cavitands that contain two quinone and two quinoxaline walls can adopt both the vase and the kite conformations depending on solvent but not on redox state. Next, in order to introduce a driving force for the conformational switching process in diquinone cavitands, we designed cavitands with hydrogen bond acceptor groups on the quinoxaline walls. These acceptors were sought to establish hydrogen bonds with the hydroquinone groups in the reduced redox state, thereby stabilizing the vase form. Oxidation to the quinone state would remove these interactions, switching the cavitand back to the kite form. Cavitands equipped with different hydrogen bond acceptor groups were synthesized and evaluated. We found that carboxamide moieties are best suited to assist redox-induced switching of conformational and binding properties. With the goal of further increasing association constants and reducing guest-exchange rates via steric congestion, we exchanged the naphthoquinone with the triptycene-quinone moiety. The congesting influence of the triptycene-quinone moiety on the binding properties was quantified both in the presence and in the absence of additional hydrogen bond interactions that stabilize the vase form. X-ray crystallographic studies provided insights into the solid-state structures of the cavitands in different solvents and redox states. A significant enhancement of association constants and reduction in guest release rates was observed in the reduced redox state compared with the top-open system, yielding redox-switchable cavitand baskets. These studies represent a step towards the development of redox-switchable molecular grippers on metal surfaces. Future challenges will consist in the development of cavitands that will no longer rely on an external proton source for the switching process, allowing redox-switching to be performed in purely aprotic media. Finally, suitable leg functionalization would enable the grippers to be interfaced with metal surfaces.

8.
J Am Chem Soc ; 136(10): 3852-8, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24568570

ABSTRACT

Various H-bond acceptor groups were evaluated for their propensity to induce conformational switching between the kite and vase forms of diquinone-diquinoxaline resorcin[4]arene cavitands upon redox interconversion. The H-bond acceptors were placed on the quinoxaline walls with the purpose of stabilizing the vase form only in the reduced hydroquinone state of the cavitand by forming H-bonds with the hydroquinone OH groups. Design guidelines for successful acceptors were derived. The carboxamide acceptor was shown to be the best candidate. Based on this moiety, a redox-switchable triptycene-based basket that can completely sterically encapsulate a guest in its closed vase conformation was prepared. The basket binds small molecule guests with association constants of up to 10(4) M(-1) in mesitylene-d12 and exhibits slow guest exchange kinetics with a half-life for guest release in the order of 10(4) s.

9.
J Am Chem Soc ; 136(6): 2441-9, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24490940

ABSTRACT

Understanding the distance distribution and dynamics between moieties attached to the walls of a resorcin[4]arene cavitand, which is switchable between an expanded kite and a contracted vase form, might enable the use of this molecular system for the study of fundamental distance-dependent interactions. Toward this goal, a combined experimental and molecular dynamics (MD) simulation study on donor/acceptor borondipyrromethene (BODIPY) dye-labeled cavitands present in the vase and kite forms was performed. Direct comparison between anisotropy decays calculated from MD simulations with experimental fluorescence anisotropy data showed excellent agreement, indicating that the simulations provide an accurate representation of the dynamics of the system. Distance distributions between the BODIPY dyes were established by comparing time-resolved Förster resonance energy transfer experiments and MD simulations. Fluorescence intensity decay curves emulated on the basis of the MD trajectories showed good agreement with the experimental data, suggesting that the simulations present an accurate picture of the distance distributions and dynamics in this molecular system and provide an important tool for understanding the behavior of extended molecular systems and designing future applications.


Subject(s)
Boron Compounds/chemistry , Coloring Agents/chemistry , Computer Simulation , Ethers, Cyclic/chemistry , Resorcinols/chemistry , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , Models, Molecular
10.
J Am Chem Soc ; 134(36): 14702-5, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22906195

ABSTRACT

Diquinone-based resorcin[4]arene cavitands that open to a kite and close to a vase form upon changing their redox state, thereby releasing and binding guests, have been prepared and studied. The switching mechanism is based on intramolecular H-bonding interactions that stabilize the vase form and are only present in the reduced hydroquinone state. The intramolecular H-bonds were characterized using X-ray, IR, and NMR spectroscopies. Guests were bound in the closed, reduced state and fully released in the open, oxidized state.


Subject(s)
Calixarenes/chemistry , Ethers, Cyclic/chemistry , Phenylalanine/analogs & derivatives , Resorcinols/chemistry , Models, Molecular , Molecular Structure , Oxidation-Reduction , Phenylalanine/chemistry
12.
Chemistry ; 16(42): 12590-602, 2010 Nov 08.
Article in English | MEDLINE | ID: mdl-20865704

ABSTRACT

A series of borondipyrromethane (BODIPY)-dye-labeled resorcin[4]arene cavitands 1-4 with different lengths of oligo(phenylene-ethynylene) spacers between the dyes and the macrocyclic rim has been synthesized. Their switching behavior from the "vase" to "kite" conformations in bulk solution was examined by both variable-temperature (VT) NMR and fluorescence spectroscopy. Both VT-NMR and VT fluorescence resonance energy transfer (FRET) experiments showed that cavitands 1-4 undergo vase-to-kite switching at low temperatures. Acid-triggered switching to the kite conformation was observed by fluorescence spectroscopy. Quantitative evaluation of the FRET data led to the determination of the Förster radius R(0)=37 Šfor the BODIPY-dye FRET pair and an average cavitand opening angle α=16° in the vase conformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...