Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(24): 10293-10302, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38832635

ABSTRACT

Li+ ion conduction in two aligned liquid crystalline electrolytes consisting of 10 mol% Li+ salt of a pro-mesogenic anion derived from [closo-1-CB11H12]- in non-ionic hosts was investigated. Using electrochemical impedance spectroscopy (EIS), the ionic conductivity in the parallel (σ‖) and perpendicular (σ⊥) directions of the electrolyte samples was determined using two types of cells: an interdigitated gold electrode and a nylon 6-coated ITO cell. The ratio of ionic conductivities σ⊥/σ‖ in the electrolyte with a nona(ethylene oxide) spacer was about 3 in the entire SmA phase, while in the shorter homologue, the ratio monotonically increases from about 0.4 to 2.9. The liquid crystalline behavior of the hosts and the electrolytes was investigated by optical, thermal, and powder XRD methods.

2.
Science ; 384(6700): 1096-1099, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843325

ABSTRACT

Spontaneous mirror symmetry breaking by formation of chiral structures from achiral building blocks and emergent polar order are phenomena rarely observed in fluids. Separately, they have both been found in certain nematic liquid crystalline phases; however, they have never been observed simultaneously. Here, we report a heliconical arrangement of achiral molecules in the ferroelectric nematic phase. The phase is thus spontaneously both polar and chiral. Notably, the pitch of the heliconical structure is comparable to the wavelength of visible light, giving selective reflection controllable by temperature or application of a weak electric field. Despite bearing resemblance to the heliconical twist-bend nematic phase, this chiral ferroelectric nematic phase arises from electrical interactions that induce a noncollinear orientation of electric dipoles.

3.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38380754

ABSTRACT

Chiral thin films showing electronic and plasmonic circular dichroism (CD) are intensively explored for optoelectronic applications. The most studied chiral organic films are the composites exhibiting a helical geometry, which often causes entanglement of circular optical properties with unwanted linear optical effects (linearly polarized absorption or refraction). This entanglement limits tunability and often translates to a complex optical response. This paper describes chiral films based on dark conglomerate, sponge-like, liquid crystal films, which go beyond the usual helical type geometry, waiving the problem of linear contributions to chiroptical electronic and plasmonic properties. First, we show that purely organic films exhibit high electronic CD and circular birefringence, as studied in detail using Mueller matrix polarimetry. Analogous linear properties are two orders of magnitude lower, highlighting the benefits of using the bi-isotropic dark conglomerate liquid crystal for chiroptical purposes. Next, we show that the liquid crystal can act as a template to guide the assembly of chemically compatible gold nanoparticles into 3D spiral-like assemblies. The Mueller matrix polarimetry measurements confirm that these composites exhibit both electronic and plasmonic circular dichroisms, while nanoparticle presence is not compromising the beneficial optical properties of the matrix.

4.
Chemphyschem ; 25(11): e202300848, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38233352

ABSTRACT

The syntheses and characterisation of the 4-[{[4-({n-[4-(4-cyanophenyl)phenyl]-n-yl}oxy)phenyl]-methylidene}amino]phenyl-4-alkoxybenzoates (CBnOIBeOm) are reported with n=8 and 10 and m=1-10. The two series display fascinating liquid crystal polymorphism. All twenty reported homologues display an enantiotropic nematic (N) phase at high temperature. When the length of the spacer (n) is greater than that of the terminal chain (m), the twist-bend nematic (NTB) phase is observed at temperatures below the N phase. As the length of the terminal chain is increased and extends beyond the length of the spacer up to three smectic phases are observed on cooling the N phase. One of these smectic phases has been assigned as the rare twist-bend smectic C subphase, the SmCTB-α phase. In all the smectic phases, a monolayer packing arrangement is seen, and this is attributed to the anti-parallel associations of the like mesogenic units.

5.
ACS Omega ; 8(39): 36562-36568, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810647

ABSTRACT

We report two new series of compounds that show the ferroelectric nematic, NF, phase in which the terminal chain length is varied. The longer the terminal chain, the weaker the dipole-dipole interactions of the molecules are along the director and thus the lower the temperature at which the axially polar NF phase is formed. For homologues of intermediate chain lengths, between the non-polar and ferroelectric nematic phases, a wide temperature range nematic phase emerges with antiferroelectric character. The size of the antiparallel ferroelectric domains critically increases upon transition to the NF phase. In dielectric studies, both collective ("ferroelectric") and non-collective fluctuations are present, and the "ferroelectric" mode softens weakly at the N-NX phase transition because the polar order in this phase is weak. The transition to the NF phase is characterized by a much stronger lowering of the mode relaxation frequency and an increase in its strength, and a typical critical behavior is observed.

6.
Chemphyschem ; 24(6): e202300105, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36916801

ABSTRACT

The front cover artwork is provided by Dr Rebecca Walker of the Liquid Crystals Group at the University of Aberdeen. The image is a cartoon depiction of the formation of the heliconical chiral twist-bend nematic phase (N*TB ) from its constituent bent molecules. The presence of a single enantiomer of the chiral, lactate-based liquid crystal dimers biases the formation of helices with only one handedness, unlike in the conventional NTB phase, observed for achiral molecules, for which the left- and right-handed helices are doubly degenerate. Read the full text of the Research Article at 10.1002/cphc.202200807.

7.
Chemistry ; 29(28): e202300073, 2023 May 16.
Article in English | MEDLINE | ID: mdl-36807424

ABSTRACT

The synthesis and characterisation of two series of low molar mass mesogens, the (4-nitrophenyl) 2-alkoxy-4-(4-methoxybenzoyl)oxybenzoates (NT3.m) and the (3-fluoro-4-nitrophenyl) 2-alkoxy-4-(4-methoxybenzoyl)oxybenzoates (NT3F.m), are reported in order to investigate the effect of changing the position of a lateral alkoxy chain from the methoxy-substituted terminal ring to the central phenyl ring in these two series of materials based on RM734. All members of the NT3.m series exhibited a conventional nematic phase, N, which preceded the ferroelectric nematic phase, NF , whereas all the members of the NT3F.m series exhibited direct NF -I transitions except for NT3F.1 which also exhibited an N phase. These materials cannot be described as wedge-shaped, yet their values of the ferroelectric nematic-nematic transition temperature, T N F N ${{_{{\rm N}{_{{\rm F}}}{\rm N}}}}$ , exceed those of the corresponding materials with the lateral alkoxy chain located on the methoxy-substituted terminal ring. In part, this may be attributed to the effect that changing the position of the lateral alkoxy chain has on the electronic properties of these materials, specifically on the electron density associated with the methoxy-substituted terminal aromatic ring. The value of TNI decreased with the addition of a fluorine atom ortho to the nitro group in NT3F.1, however, the opposite behaviour was found when the transition temperatures of the NF phase were compared which are higher for the NT3F.m series. This may reflect a change in the polarity and polarizability of the NT3F.m series compared to the NT3.m series. Therefore, it is suggested that, rather than simply promoting a tapered shape, the role of the lateral chain in inhibiting anti-parallel associations and its effect on the electronic properties of the molecules are the key factors in driving the formation of the NF phase.

8.
Chemphyschem ; 24(7): e202200758, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36449329

ABSTRACT

The inclusion of secondary and tertiary benzanilide-based mesogenic groups into liquid crystal dimers is reported as a means to develop new materials. Furthermore, substitution at the nitrogen atom is shown to introduce an additional synthetic 'handle' to modify the molecular structure of the tertiary materials. The design of these materials has proved challenging due to the strong preferences of 3° benzanilides for the E amide conformation. In this work, lateral substitution is used to modify the conformational preferences of the amide linkage and promote liquid crystallinity for a series of N-methyl benzanilide dimers. As the proportion of the E conformer decreases, the nematic-isotropic transition temperatures increase, and enantiotropic nematic behaviour is observed. We also report the synthesis and characterisation of the analogous 2° benzanilide-based materials, which show nematic and twist-bend nematic behaviour. This approach highlights the effects that seemingly small structural modifications, such as the inclusion and position of a methyl group, can have on molecular shape and hence, liquid crystalline behaviour.

9.
Chemistry ; 29(15): e202203288, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36524762

ABSTRACT

A new, 19 π-delocalized electrons planar Blatter radical building block was developed and used to obtain paramagnetic bent-core liquid crystals. The mesogens were investigated by optical, thermal, powder XRD and DFT methods in the pure form and as binary mixtures. Comparison of their properties with those of the classical Blatter radical analogues revealed that planarization of the central angular element results in a significantly higher stability of the mesophases and increased molecular organization suitable for the formation of ordered banana and columnar mesophases with tighter π-π interactions. These results indicate access to a new, potentially rich class of functional paramagnetic soft materials.

10.
Chemphyschem ; 24(6): e202200807, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36422888

ABSTRACT

Non-symmetric lactate-based chiral liquid crystal dimers containing an odd-membered spacer are shown to exhibit a chiral twist-bend nematic phase which is stable on cooling to room temperature. A comparison of racemic and optically pure materials reveals that the pitch length in the N*TB phase is not influenced by molecular chirality, whereas the nematic-twist-bend nematic transition temperature is increased.

11.
Soft Matter ; 18(42): 8194-8200, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36269084

ABSTRACT

A resonant X-ray scattering response for two structural models of a chiral cubic phase with a giant unit cell, one composed of a continuous grid and micelles and the other with three continuous grids, is studied theoretically and compared to experimental measurements. For both structural models resonant enhancement of all the symmetry-allowed diffraction peaks is predicted, as well as the existance of several symmetry forbidden peaks (pure resonant peaks). Experimental measurements were performed at the carbon and sulphur absorption edge. Only one pure resonant peak was observed, which is predicted by both models. Two low-angle symmetry allowed peaks, not observed in non-resonant scattering, were resonantly enhanced and their intensity angular dependence can distinguish between the two structural models.

12.
Soft Matter ; 18(25): 4679-4688, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35678154

ABSTRACT

The synthesis and characterisation of the 1-(4-cyanobiphenyl-4'-yl)-10-(4-alkylanilinebenzylidene-4'-oxy)decanes (CB10O·m) are reported. This series shows a rich liquid crystal polymorphism including twist-bend nematic and smectic phases. All the homologues reported exhibit an enantiotropic conventional nematic phase. For the homologues with m ≤ 10, the local packing in the nematic phases and the layer spacing in the smectic phases indicates an intercalated arrangement of the molecules. An intercalated smectic CA phase is observed if m/11 ≈ 0.5. Either side of this condition, the twist-bend nematic phase is observed, a novel pattern of behaviour for a series on increasing a terminal chain length. For longer chain lengths, m = 12, 14, 16 and 18, two twist-bend smectic C (SmCTB) phases are observed, and the packing of the molecules is now of a bilayer-type. The higher temperature variant is termed SmCTB-SH in which SH (single helix) refers to the presence of a short, distorted clock-type helix. In the lower temperature SmCTB-DH phase, an additional longer helix is superimposed on the short one, and DH denotes double helix.

13.
Chem Commun (Camb) ; 58(53): 7364-7367, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35621065

ABSTRACT

Liquid crystalline (LC) dimers formed helical nanofilaments depending on the parity of the alkyl linker, revealing an unusual odd-even effect. Molecular dynamics simulations were used to investigate the observed tendency. Elongation of the linker translates to an increase of the pitch of the helices, which allows achieving tuneable helical assemblies of Au nanoparticles doped to the LC matrix. The impact of the tuneable pitch of helices on the chiral optical properties of composites was investigated with full-wave simulations based on the T-matrix method.


Subject(s)
Liquid Crystals , Metal Nanoparticles , Gold , Liquid Crystals/chemistry , Molecular Dynamics Simulation , Polymers/chemistry
14.
Soft Matter ; 18(10): 2006-2011, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35188168

ABSTRACT

Mesogenic materials, quinoxaline derivatives with semi-flexible cores, are reported to form a new type of 3D columnar phase with a large crystallographic unit cell and Fddd lattice below the columnar hexagonal phase. The 3D columnar structure is a result of frustration imposed by the arrangement of helical columns of opposite chiralities into a triangular lattice. The studied materials exhibit fluorescence properties that could be easily tuned by modification of the molecular structure; for compounds with the extended π electron conjugated systems the fluorescence is quenched. For molecules with a flexible structure the fluorescence quantum yield reaches 25%. On the other hand, compounds with a more rigid mesogenic core, for which the fluorescence is suppressed, show effective photogeneration of charge carriers. For some materials bi-polar hole and electron transport was observed.

15.
ACS Appl Mater Interfaces ; 14(3): 4409-4416, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35029362

ABSTRACT

A photonic lattice is an efficient platform for optically exploring quantum phenomena. However, its fabrication requires high costs and complex procedures when conventional materials, such as silicon or metals, are used. Here, we demonstrate a simple and cost-effective fabrication method for a reconfigurable chiral photonic lattice of the helical nanofilament (HNF) liquid crystal (LC) phase and diffraction grating showing wavelength-dependent diffraction with a rotated polarization state. Furthermore, the UV-exposed areas of the HNF film having chiral characteristics act as optical building blocks that induce resonant intensity modulation in the reflectance and transmittance modes and the optical rotation of the linear polarization. Our photonic lattice of the HNF can be an efficient platform for a chirality-embedded photonic lattice at a low cost.

16.
Chemphyschem ; 22(24): 2506-2510, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34623724

ABSTRACT

Liquid-crystal materials exhibiting up to three nematic phases are reported. Dielectric response measurements show that while the lower temperature nematic phase has ferroelectric order and the highest temperature nematic phase is apolar, the intermediate phase has local antiferroelectric order. The modification of the molecular structure by increasing the number of lateral fluorine substituents leads to one of the materials showing a direct isotropic-ferronematic phase transition.

17.
Adv Mater ; 33(39): e2103288, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34396593

ABSTRACT

Achiral mesogenic molecules are shown to be able to spontaneously assemble into liquid crystalline smectic phases having either simple or double-helical structures. At the transition between these phases, the double-helical structure unwinds. As a consequence, in some temperature range, the pitch of the helix becomes comparable to the wavelength of visible light and the selective reflection of light in the visible range is observed. The photonic bandgap phenomenon is reported for achiral liquid crystals.

18.
Polymers (Basel) ; 13(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208990

ABSTRACT

Smart self-organising systems attract considerable attention in the scientific community. In order to control and stabilise the liquid crystalline behaviour, and hence the self-organisation, the polymerisation process can be effectively used. Mesogenic units incorporated into the backbones as functional side chains of weakly cross-linked macromolecules can become orientationally ordered. Several new calamitic reactive mesogens possessing the vinyl terminal group with varying flexible chain lengths and with/without lateral substitution by the methyl (methoxy) groups have been designed and studied. Depending on the molecular structure, namely, the type and position of the lateral substituents, the resulting materials form the nematic, the orthogonal SmA and the tilted SmC phases in a reasonably broad temperature range, and the structure of the mesophases was confirmed by X-ray diffraction experiments. The main objective of this work is to contribute to better understanding of the molecular structure-mesomorphic property relationship for new functional reactive mesogens, aiming at further design of smart self-assembling macromolecular materials for novel sensor systems.

19.
ACS Nano ; 15(3): 4916-4926, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33621046

ABSTRACT

The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of-principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV-vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV-vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.

20.
Chemistry ; 27(24): 7108-7113, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33464673

ABSTRACT

Herein, it is reported that the polymorphism in the helical nanofilament (HNF, B4 ) liquid-crystalline phase depends on the fabrication methods, that is, UV-driven formation and template-assisted self-assembly in the nanoconfined geometry. As a result, uniaxially oriented HNFs with different helical structures were obtained, in which generation of the twisted-ribbon and cylindrical-ribbon polymorphs showed that even the molecular lattice has a different orientation. The detailed structures were directly observed by SEM and grazing-incidence X-ray diffraction with synchrotron radiation. The resultant polymorphs could be used in chiro-optical applications due to the capability for fine control of the helical structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...