Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 74: 996-1004, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26264266

ABSTRACT

Comparative and comprehensive investigations for adenovirus recognition and detection were conducted using plastic and natural antibodies to compare three different strategies. The implementation of molecularly imprinted polymer (MIP) technology for specific and sensitive recognition of viruses with the combination of biosensors was reported. Plastic antibodies (MIPs nanoparticles) were produced for adenovirus by employing a novel solid phase synthesis method. MIP receptors were then characterised using dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques prior to immobilisation on a surface plasmon resonance (SPR) sensor as affinity receptor for adenovirus detection. Two different templates were also imprinted as control MIPs (vancomycin-MIP and MS2-MIP). The specific recognition of adenovirus was investigated in the concentration range of 0.01-20 pM and the limit of detection was achieved as 0.02 pM. As an alternative to MIP receptors, direct and sandwich assays were developed for adenovirus quantification using natural antibodies. The detection limit of direct and sandwich assays were found as 0.3 pM and 0.008 pM, respectively. The kinetic data analyses were performed for three different adenovirus recognition methods and cross-reactivity studies were also conducted using MS2 phage as control virus and an excellent specificity was achieved with all assays types. This work confirmed the suitability of the MIPs SPR sensor for the detection of viruses.


Subject(s)
Adenoviridae/immunology , Adenoviridae/isolation & purification , Antibodies, Viral/immunology , Immunoassay/instrumentation , Surface Plasmon Resonance/instrumentation , Viral Load/instrumentation , Biosensing Techniques/instrumentation , Equipment Design , Equipment Failure Analysis , HEK293 Cells , Humans , Reproducibility of Results , Sensitivity and Specificity
2.
Biochimie ; 115: 144-54, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26005094

ABSTRACT

Detection of waterborne viruses is important to eliminate and control their harmful effect as pathogens. Hence, the use of rapid and sensitive detection technologies is critically important as they can aid in investigating outbreaks and help in developing prevention strategies. To date range of viruses can contaminate drinking water sources, causing illnesses such as diarrhoea, pneumonia and gastroenteritis which can result in death. Due to their small size (nm) their complete removal from water can be difficult with current water treatment processes while being resistant to disinfectants. Available techniques for virus detection include filtration technologies, enzyme-linked immunosorbent assays and polymerase chain reaction. Although each technique has limitations, the use of biosensor technology with smart affinity materials and nanomaterials can show great potential in sensing viruses in water samples. This review reports on the latest technologies used for waterborne virus removal and detection with focus on rapid detection using biosensors.


Subject(s)
Biosensing Techniques/methods , Viruses/isolation & purification , Water , Animals , Filtration , Humans , Viruses/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...