Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 147: 107359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613925

ABSTRACT

Twenty N-substituted pyrrolo[3,4-c]quinoline-1,3-diones 3a-t were synthesized by a cyclization reaction of Pfitzinger's quinoline ester precursor with the selected aromatic, heteroaromatic and aliphatic amines. The structures of all derivatives were confirmed by IR, 1H NMR, 13C NMR and HRMS spectra, while their purity was determined using HPLC techniques. Almost all compounds were identified as a new class ofpotent inhibitors against hDHODH among which 3a and 3t were the most active ones with the same IC50 values of 0.11 µM, about seven times better than reference drug leflunomide. These two derivatives also exhibited very low cytotoxic effects toward healthy HaCaT cells and the optimal lipophilic properties with logP value of 1.12 and 2.07 respectively, obtained experimentally at physiological pH. We further evaluated the comparative differences in toxicological impact of the three most active compounds 3a, 3n and 3t and reference drug leflunomide. The rats were divided into five groups and were treated intraperitoneally, control group (group I) with a single dose of leflunomide (20 mg/kg) group II and the other three groups, III, IV and V were treated with 3a, 3n and 3t (20 mg/kg bw) separately. The investigation was performed in liver, kidney and blood by examining serum biochemical parameters and parameters of oxidative stress.


Subject(s)
Dihydroorotate Dehydrogenase , Enzyme Inhibitors , Oxidoreductases Acting on CH-CH Group Donors , Animals , Humans , Male , Rats , Cell Line , Dose-Response Relationship, Drug , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Rats, Wistar , Structure-Activity Relationship , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology
2.
Food Addit Contam Part B Surveill ; 17(1): 5-15, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37881029

ABSTRACT

Honey contaminated with pyrrolizidine alkaloids (PAs) could pose a risk for human consumption, being a widely consumed food product. A fast and simple LC/MS method for the analysis of pyrrolizidine alkaloids in honey was optimised to collect occurrence data. The extraction efficiency was evaluated by a systematic study of multiple solvent mixtures and clean-up procedures. The best results for PA extraction were obtained using a formic acid/methanol mixture with subsequent clean-up by the QuEChERS method, resulting in a mean recovery range of 91.8-102%. The method validation showed satisfactory intra-day (RSD < 5.1%) and inter-day precision (RSD < 9.1%). The proposed method was applied to 14 samples. A total of six PAs and two N-oxides were detected, with levels between 89 and 8188 µg/kg. This assessment highlights the potential risk of intoxication and the need for further investigations regarding an effective quality system for manufacturers to control PAs in honey.


Subject(s)
Honey , Pyrrolizidine Alkaloids , Chromatography, High Pressure Liquid , Food Contamination/analysis , Honey/analysis , Pyrrolizidine Alkaloids/analysis , Tandem Mass Spectrometry/methods , Republic of North Macedonia
3.
Antioxidants (Basel) ; 12(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38001756

ABSTRACT

Health-oriented preferences, a demand for innovative food concepts, and technological advances have greatly influenced changes in the food industry and led to remarkable development of the functional food market. Incorporating herbal extracts as a rich source of bioactive compounds (BC) could be an effective solution to meet the high demand of consumers in terms of expanding the high-quality range of functional foods. The aim of this study is the valorization of the bioactive potential of T. montanum L., an understudied Mediterranean plant species, and the in-depth elucidation of a polyphenolic profile with a UHPLC-HR MS/MS and NMR analysis. The total phenolic content (TPC) and antioxidant capacity (AC) were determined on heat-assisted (HAE), microwave-assisted (MAE) and subcritical water (SWE) extracts. In terms of antioxidant capacity, SWE extracts showed the most notable potential (ABTS: 0.402-0.547 mmol eq Trolox g-1 dw, DPPH: 0.336-0.427 mmol eq Trolox g-1 dw). 12 phenolic compounds were identified in the samples of T. montanum from six microlocations in Croatia, including nine phenylethanoid glycosides (PGs) with total yields of 30.36-68.06 mg g-1 dw and 25.88-58.88 mg g-1 dw in HAE and MAE extracts, respectively. Echinacoside, teupolioside, stachysoside A, and poliumoside were the most abundant compounds HAE and MAE extracts, making T. montanum an emerging source of PGs.

4.
J Biol Inorg Chem ; 27(8): 715-729, 2022 12.
Article in English | MEDLINE | ID: mdl-36220939

ABSTRACT

The in vitro antimicrobial activity of Fe(III) and Ga(III) complexes with N'-(2,3-dihydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (H2L1), N'-(2,4-dihydroxy-phenyl-methylidene)-3-pyridinecarbohydrazide (H2L2), N'-(2,5-dihydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (H2L3), N'-(2-hydroxy-3-methoxyphenyl-methylidene)-3-pyridine-carbohydrazide (H2L4), N'-(2-hydroxy-4-methoxyphenylmethyl-idene)-3-pyridine-carbohydrazide (H2L5), and N'-(2-hydroxy-5-methoxyphenylmethylidene)-3-pyridinecarbo-hydrazide (H2L6) toward several Gram-positive strains of Staphylococcus aureus, a Gram-negative strain of Escherichia coli, and a yeast Candida albicans were investigated. Fe(III)-complexes do not possess antimicrobial activity against all tested strains at concentrations up to 10 mg mL-1. Ga(III) complexes with dihydroxy derivatives showed selective activity, while the broadest range of antibacterial and antifungal activities was observed for complex with 2-hydroxy-3-methoxy-derivative, ligand H2L5. In addition, the coordination properties of ligands H2L1-H2L3 in solution were investigated by UV-Vis spectroscopy. The stability constants (logK) for Ga(III)-H2L 1:1 complexes in MeOH/H2O 1/1 at pH 2.52 were determined, and amounted to 5.8, 5.68, and 4.7, respectively. Detailed characterization of complexes was performed by high-resolution mass spectrometry. The fragmentation pathways for dimer [Fe2(L1)2]2+, [Fe(HL)2]+, [Ga(HL2)2]+ and adduct ions are given. The comparison with analogue Ga(III) and Fe(III) complexes with compounds H2L4-H2L6 was made as well.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Ferric Compounds/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Ligands , Escherichia coli , Spectrum Analysis , Pyridines , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
5.
Mol Pharm ; 18(11): 4210-4223, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34670371

ABSTRACT

Praziquantel (PZQ) is a biopharmaceutical classification system (BCS) class II anthelmintic drug characterized by poor solubility and a bitter taste, both of which can be addressed by inclusion complexation with cyclodextrins (CD). In this work, a comprehensive investigation of praziquantel/cyclodextrin (PZQ/CD) complexes was conducted by means of UV-vis spectroscopy, spectrofluorimetry, NMR spectroscopy, liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS), and molecular modeling. Phase solubility studies revealed that among four CDs tested, the randomly methylated ß-CD (RMßCD) and the sulfobutylether sodium salt ß-CD (SBEßCD) resulted in the highest increase in PZQ solubility (approximately 16-fold). The formation of 1:1 inclusion complexes was confirmed by HRMS, NMR, and molecular modeling. Both cyclohexane and the central pyrazino ring, as well as an aromatic part of PZQ are included in the CD central cavity through several different binding modes, which exist simultaneously. Furthermore, the influence of CDs on PZQ stability was investigated in solution (HCl, NaOH, H2O2) and in the solid state (accelerated degradation, photostability) by ultra-high-performance liquid chromatography-diode array detection-tandem mass spectrometry (UPLC-DAD/MS). CD complexation promoted new degradation pathways of the drug. In addition to three already known PZQ degradants, seven new degradation products were identified (m/z 148, 215, 217, 301, 327, 343, and 378) and their structures were proposed based on HRMS/MS data. Solid complexes were prepared by mechanochemical activation, a solvent-free and ecologically acceptable method.


Subject(s)
Anthelmintics/chemistry , Praziquantel/chemistry , beta-Cyclodextrins/chemistry , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Drug Compounding/methods , Drug Stability , Excipients/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Solubility
6.
Arh Hig Rada Toksikol ; 71(1): 56-62, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32597137

ABSTRACT

Beta-blockers are chiral compounds with enantiomers that have different bioactivity, which means that while one is active, the other can be inactive or even harmful. Due to their high consumption and incomplete degradation in waste water, they may reach surface waters and affect aquatic organisms. To address this issue we developed a chromatographic method suitable for determining beta-blocker enantiomers in surface waters. It was tested on five beta-blockers (acebutolol, atenolol, bisoprolol, labetalol and metoprolol) and validated on bisoprolol enantiomers. Good enantioseparation of all analysed beta-blockers was achieved on the Chirobiotic V column with the mobile phase composed of methanol/acetic acid/triethylamine (100/0.20/0.15 v/v/v) at a flow rate of 0.5 mL/min and column temperature of 45 °C. Method proved to be linear in the concentration range from 0.075 µg/mL to 5 µg/mL, and showed good recovery. The limits of bisoprolol enantiomer detection were 0.025 µg/mL and 0.026 µg/mL and of quantification 0.075 µg/mL and 0.075 µg/mL. Despite its limitations, it seems to be a promising method for bisoprolol enantiomer analysis in surface water samples. Further research could focus on waste water analysis, where enantiomer concentrations may be high. Furthermore, transferring the method to a more sensitive one such as liquid chromatography coupled with tandem mass spectrometry and using ammonium acetate as the mobile phase additive instead of acetic acid and triethylamine would perhaps yield much lower limits of detection and quantification.


Subject(s)
Acebutolol/analysis , Adrenergic beta-Antagonists/analysis , Atenolol/analysis , Bisoprolol/analysis , Chromatography, High Pressure Liquid/methods , Labetalol/analysis , Metoprolol/analysis , Water/chemistry
7.
Electrophoresis ; 41(7-8): 493-501, 2020 04.
Article in English | MEDLINE | ID: mdl-31651992

ABSTRACT

Thermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications. Contrary to contemporary approaches, the nonlinear regression is performed on limiting mobility data calculated by PeakMaster's correction engine, not on the raw experimental mobility data. Therefore, there is no requirement to perform all measurements at a constant ionic strength of the set of BGEs. We devised the computer program AnglerFish that performs the necessary calculations in a user-friendly fashion. All thermodynamic pKa values and limiting electrophoretic mobilities for arbitrarily charged substances having any number of ionic forms are calculated by one fit. The user input consists of the buffer composition of the set of BGEs and experimentally measured effective mobilities of the inspected weak electrolyte.


Subject(s)
Electrolytes/chemistry , Electrophoresis, Capillary/methods , Software , Algorithms , Electrolytes/analysis , Hydrogen-Ion Concentration , Nonlinear Dynamics , Osmolar Concentration , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...