Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Molecules ; 29(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39125065

ABSTRACT

In this work, the role of ascorbic acid in the process of azo dye degradation was explained. For this purpose, the kinetics of azo dye degradation under different conditions was studied. Among them, the influence of daylight protection/exposition, different concentrations of ascorbic acid (0.567-0.014 mol/dm3), and temperature (20 °C and 50 °C) on the rate of the dyes' degradation was considered. For this process, the kinetic equation was proposed, which indicates that the process of azo dye degradation using ascorbic acid is first order. Moreover, the observed rate constants were determined, and the mechanism of azo dye degradation was proposed. Spectrophotometry results, together with FTIR, fluorescence spectroscopy, and DFT calculations, explain the origin of the decolorization of the azo dyes and highlight the role of ascorbic acid in this process. Detailed analysis of the obtained products indicates that the process itself goes through several stages in which equally or more toxic compounds are formed. Obtained results from LCMS studies indicate that during tropaeolin OO degradation, 1,2-Diphenylhydrazine (m/z 185.1073) is formed. Thus, the process of azo dye degradation should be carried out in protective conditions. The proposed mechanism suggests that ascorbic acid at high content levels can be used for azo dye degradation from aqueous solution and can be an alternative method for their removal/neutralization from waste solution but with caution during the process.

2.
Dalton Trans ; 52(40): 14649-14662, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37791584

ABSTRACT

This study investigates the impacts of structure and composition on the optical and electronic properties of a series of pyridinium-based bismuth iodide complexes. Organic substrates with various functional groups, such as 4-aminopyridine (4-Ampy), 4-methylpyridine (4-Mepy), 4-dimethylaminopyridine (4-Dmapy), and 4-pyridinecarbonitrile (4-CNpy) with different electron-donating and electron-withdrawing groups at the para position of the pyridine ring were employed. Crystallographic analysis reveals various bismuth iodide structures, including 1D chains and discrete 0D motifs. The optical band gap of these materials, identified via diffuse reflectance spectroscopy (DRS) and verified with density functional theory (DFT) calculations, is influenced by the crystal packing and stabilising interactions. Through a comprehensive analysis, including Hirshfeld surface (HS) and void assessment, the study underscores the influence of noncovalent intermolecular interactions on crystal packing. Spectroscopic evaluations provide insights into electronic interactions, elucidating the role of electron donor and acceptor substituents within the lattice. Thermogravimetric differential thermal analysis (TG-DTA) indicates structural stability up to 250 °C. Linear sweep voltammetry (LSV) reveals significant conductivity in the range of 10-20 mS per pixel at 298.15 K. X-ray absorption spectroscopy (XAS) at the Bi L3 edge indicates a similar oxidation state and electronic environment across all samples, underscoring the role of bismuth centres surrounded by iodides.

3.
Molecules ; 27(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889380

ABSTRACT

The selective determination of metals in waste solutions is a very important aspect of the industry and environmental protection. Knowledge of the contents and composition of the waste can contribute to design an efficient process separation and recovery of valuable metals. The problematic issue is primarily the correct determination of metals with similar properties such as palladium and platinum. Thus this paper focuses on the development of a selective method that enables Pd(II) determination in the presence of Pt(IV) ions using the azo-dye tropaeolin OO (TR). For this purpose, the process of the metalorganic complex formation and Pd(II) ions determination were studied by using UV-Vis spectrophotometry under different conditions: solvents (water and B-R buffer), pH (2.09-6.09), temperature (20-60 °C), anions and cations concentrations. The formed metalorganic complex between Pd and tropaeolin OO allows for distinguishing Pd(II) ions from both platinum complexes, i.e. Pt(II), Pt(IV). Moreover, the proposed method can be applied to solutions containing both chloride and chlorate ions. The obtained characteristic spectrum with two maxima allows the determination of palladium even in the presence of other cations (Na, K, Mg, Zn, Co, Ni, Al) and changed concentrations of Pt(IV) ions. Furthermore, the developed spectrophotometric method for the Pd(II) ions determination using tropaeolin OO is characterized by high selectivity towards palladium ions.


Subject(s)
Palladium , Platinum , Azo Compounds , Ions , Palladium/chemistry , Platinum/chemistry
4.
J Mater Chem B ; 10(11): 1763-1774, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35254375

ABSTRACT

The growing problem of skin diseases due to allergies often causing atopic dermatitis, which is characterized by itching, burning, and redness, constantly motivates researchers to look for solutions to soothe these effects by moisturizing skin properly. For this purpose, we combined poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun fibers with evening primrose oil (EPO) into a system of patches to ensure skin hydration. Moreover, the dressing or patch application requires appropriate stretchability and wettability of the electrospun material. Thus, we examined the mechanical properties of the PHBV blend with EPO, as well as changes in wettability of the fiber surface depending on the share of EPO additive in the blend. The effectiveness of the patches has been characterized using the water vapor transmission rate as well as by the skin moisturizing index. The thermal insulation effect of the patches on human skin has been verified as well. The patches made by combining the polymer with natural oil showed enhanced mechanical properties and increased skin hydration, indicating the potential applicability of PHBV-based patches. The presented discovery of PHBV patches with EPO is a prospective and alternative treatment for patients for whom current state-of-the-art methods do not bring satisfactory results.


Subject(s)
Polyesters , gamma-Linolenic Acid , Humans , Linoleic Acids , Oenothera biennis , Plant Oils , Prospective Studies , Skin , Wettability
5.
Molecules ; 26(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202725

ABSTRACT

In the paper, the mechanism of the process of the Rh(III) ions adsorption on activated carbon ORGANOSORB 10-AA was investigated. It was shown, that the process is reversible, i.e., stripping of Rh(III) ions from activated carbon to the solution is also possible. This opens the possibility of industrial recovery of Rh (III) ions from highly dilute aqueous solutions. The activation energies for the forward and backward reaction were determined These are equal to c.a. 7 and 0 kJ/mol. respectively. Unfortunately, the efficiency of this process was low. Obtained maximum load of Rh(III) was equal to 1.13 mg per 1 g of activated carbon.

6.
Nat Commun ; 11(1): 854, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32051416

ABSTRACT

A better control over processes responsible for the photocurrent generation in semiconductors and nanocomposites is essential in the fabrication of photovoltaic devices, efficient photocatalysts and optoelectronic elements. Therefore, new approaches towards photochemical properties tuning are intensively searched for. Among numerous parameters, the photocurrent polarity is of great importance to the overall performance of a device. Usually, the polarity is controlled through an alignment of electronic states/bands, tailoring of applied potential or suitable selection of incident light wavelengths. In most scenarios though, the influence of light intensity is somehow neglected and either some arbitrarily chosen, natural conditions are mimicked or this parameter is varied only in a narrow range. Here we present a ternary nanocomposite in which the persistent photocurrent polarity switching is achieved through changes in the light intensity. We also present arguments suggesting this behaviour is of a general character and should be considered also in other photochemical systems.

7.
ScientificWorldJournal ; 2015: 921049, 2015.
Article in English | MEDLINE | ID: mdl-25654137

ABSTRACT

FT-IR and Raman scattering spectra of cefuroxime axetil were proposed for identification studies of its crystalline and amorphous forms. An analysis of experimental spectra was supported by quantum-chemical calculations performed with the use of B3LYP functional and 6-31G(d,p) as a basis set. The geometric structure of a cefuroxime axetil molecule, HOMO and LUMO orbitals, and molecular electrostatic potential were also determined by using DFT (density functional theory). The benefits of applying FT-IR and Raman scattering spectroscopy for characterization of drug subjected to degradation were discussed.


Subject(s)
Cefuroxime/analogs & derivatives , Cefuroxime/chemistry , Microscopy, Electron, Scanning , Spectrophotometry, Infrared , Spectrum Analysis, Raman , X-Ray Diffraction
8.
Article in English | MEDLINE | ID: mdl-25589394

ABSTRACT

Vibrational (FT-IR, Raman) and electronic (UV, EPR) spectral measurements were performed for an analysis of rutin (quercetin-3-O-rutinoside) obtained from Rutaofficinalis. The identification of rutin was done with the use of FT-IR and Raman spectra. Those experimental spectra were determined with the support of theoretical calculations based on a DFT method with the B3LYP hybrid functional and 6-31G(d,p) basis set. The application of UV and EPR spectra was found to be a suitable analytical approach to the evaluation of changes in rutin exposed to certain physicochemical factors. Differences in absorbance observed in direct UV spectra were used to monitor changes in the concentration of rutin in degraded samples. Spectra of electron paramagnetic resonance allowed studying the process of free-radical quenching in rutin following its exposure to light. The molecular electrostatic potential (MEP) and frontier molecular orbitals (LUMO-HOMO) were also determined in order to predict structural changes and reactive sites in rutin.


Subject(s)
Glucosides/analysis , Quercetin/analogs & derivatives , Ruta/chemistry , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Quantum Theory , Quercetin/analysis , Rutin/analysis , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
9.
Org Biomol Chem ; 13(6): 1662-72, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25451865

ABSTRACT

Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

10.
Nanoscale ; 1(3): 299-316, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20648267

ABSTRACT

The photoelectrochemical photocurrent switching (PEPS) effect, in the beginning regarded as a scientific curiosity, has become a field of extensive study for numerous research groups all over the world. This unique effect can be utilized for nanoscale switching and information processing, furthermore, is can serve as an interface between molecular information processing and macroscopic electronics. This review summarizes recent efforts in understanding photocurrent switching effects and their application for the construction of nanoscale switches and logic devices. Furthermore, some future prospects concerning the development of electronic/optoelectronic devices based on photoactive semiconducting hybrid materials are presented.


Subject(s)
Biomimetics , Electrochemistry , Nanotechnology , Optics and Photonics , Photochemistry , Equipment Design , Nanotechnology/instrumentation , Nanotechnology/methods
SELECTION OF CITATIONS
SEARCH DETAIL