Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Mol Genet Metab ; 138(4): 107539, 2023 04.
Article in English | MEDLINE | ID: mdl-37023503

ABSTRACT

Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an inherited X-linked recessive disease caused by deficiency of iduronate-2-sulfatase (IDS), resulting in the accumulation of the glycosaminoglycans (GAG) heparan and dermatan sulfates. Mouse models of MPS II have been used in several reports to study disease pathology and to conduct preclinical studies for current and next generation therapies. Here, we report the generation and characterization of an immunodeficient mouse model of MPS II, where CRISPR/Cas9 was employed to knock out a portion of the murine IDS gene on the NOD/SCID/Il2rγ (NSG) immunodeficient background. IDS-/- NSG mice lacked detectable IDS activity in plasma and all analyzed tissues and exhibited elevated levels of GAGs in those same tissues and in the urine. Histopathology revealed vacuolized cells in both the periphery and CNS of NSG-MPS II mice. This model recapitulates skeletal disease manifestations, such as increased zygomatic arch diameter and decreased femur length. Neurocognitive deficits in spatial memory and learning were also observed in the NSG-MPS II model. We anticipate that this new immunodeficient model will be appropriate for preclinical studies involving xenotransplantation of human cell products intended for the treatment of MPS II.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Humans , Animals , Mice , Mucopolysaccharidosis II/therapy , Mice, Inbred NOD , Mice, SCID , Iduronate Sulfatase/genetics , Glycosaminoglycans
2.
Mol Genet Metab Rep ; 34: 100956, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36704405

ABSTRACT

Hunter syndrome is a rare x-linked recessive genetic disorder that affects lysosomal metabolism due to deficiency of iduronate-2-sulfatase (IDS), with subsequent accumulation of glycosaminoglycans heparan and dermatan sulfates (GAG). Enzyme replacement therapy is the only FDA-approved remedy and is an expensive life-time treatment that alleviates some symptoms of the disease without neurocognitive benefit. We previously reported successful treatment in a mouse model of mucopolysaccharidosis type II (MPS II) using adeno-associated viral vector serotype 9 encoding human IDS (AAV9.hIDS) via intracerebroventricular injection. As a less invasive and more straightforward procedure, here we report intravenously administered AAV9.hIDS in a mouse model of MPS II. In animals administered 1.5 × 1012 vg of AAV9.hIDS at 2 months of age, we observed supraphysiological levels of IDS enzyme activity in the circulation (up to 9100-fold higher than wild-type), in the tested peripheral organs (up to 560-fold higher than wild-type), but only 4% to 50% of wild type levels in the CNS. GAG levels were normalized on both sides of the blood-brain-barrier (BBB) in most of tissues tested. Despite low levels of the IDS observed in the CNS, this treatment prevented neurocognitive decline as shown by testing in the Barnes maze and by fear conditioning. This study demonstrates that a single dose of IV-administered AAV9.hIDS may be an effective and non-invasive procedure to treat MPS II that benefits both sides of the BBB, with implications for potential use of IV-administered AAV9 for other neuronopathic lysosomal diseases.

3.
Hum Gene Ther ; 34(1-2): 8-18, 2023 01.
Article in English | MEDLINE | ID: mdl-36541357

ABSTRACT

The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.


Subject(s)
Cognitive Dysfunction , Iduronate Sulfatase , Mucopolysaccharidosis II , Mucopolysaccharidosis I , Nervous System Diseases , Humans , Animals , Mice , Aged , Quality of Life , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/therapy , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Central Nervous System/metabolism , Iduronidase/genetics , Iduronidase/metabolism , Iduronate Sulfatase/genetics , Cognitive Dysfunction/metabolism , Glycosaminoglycans/metabolism , Disease Models, Animal
4.
Hum Gene Ther ; 33(23-24): 1279-1292, 2022 12.
Article in English | MEDLINE | ID: mdl-36226412

ABSTRACT

Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked recessive lysosomal disease caused by deficiency of iduronate-2-sulfatase (IDS). The absence of IDS results in the accumulation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. Currently, the only approved treatment option for MPS II is enzyme replacement therapy (ERT), Elaprase. However, ERT is demanding for the patient and does not ameliorate neurological manifestations of the disease. Using an IDS-deficient mouse model that phenocopies the human disease, we evaluated hematopoietic stem and progenitor cells (HSPCs) transduced with a lentiviral vector (LVV) carrying a codon-optimized human IDS coding sequence regulated by a ubiquitous MNDU3 promoter (MNDU3-IDS). Mice treated with MNDU3-IDS LVV-transduced cells showed supraphysiological levels of IDS enzyme activity in plasma, peripheral blood mononuclear cells, and in most analyzed tissues. These enzyme levels were sufficient to normalize GAG storage in analyzed tissues. Importantly, IDS levels in the brains of MNDU3-IDS-engrafted animals were restored to 10-20% than that of wild-type mice, sufficient to normalize GAG content and prevent emergence of cognitive deficit as evaluated by neurobehavioral testing. These results demonstrate the potential effectiveness of ex vivo MNDU3-IDS LVV-transduced HSPCs for treatment of MPS II.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Animals , Mice , Humans , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/therapy , Leukocytes, Mononuclear , Iduronate Sulfatase/genetics , Enzyme Replacement Therapy , Disease Models, Animal , Hematopoietic Stem Cells
5.
Front Mol Neurosci ; 14: 618360, 2021.
Article in English | MEDLINE | ID: mdl-34040503

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). The two current treatments [hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT)], are insufficiently effective in addressing neurologic disease, in part due to the inability of lysosomal enzyme to cross the blood brain barrier. With a goal to more effectively treat neurologic disease, we have investigated the effectiveness of AAV-mediated IDUA gene delivery to the brain using several different routes of administration. Animals were treated by either direct intracerebroventricular (ICV) injection, by intrathecal (IT) infusion into the cerebrospinal fluid, or by intranasal (IN) instillation of AAV9-IDUA vector. AAV9-IDUA was administered to IDUA-deficient mice that were either immunosuppressed with cyclophosphamide (CP), or immunotolerized at birth by weekly injections of human iduronidase. In animals treated by ICV or IT administration, levels of IDUA enzyme ranged from 3- to 1000-fold that of wild type levels in all parts of the microdissected brain. In animals administered vector intranasally, enzyme levels were 100-fold that of wild type in the olfactory bulb, but enzyme expression was close to wild type levels in other parts of the brain. Glycosaminoglycan levels were reduced to normal in ICV and IT treated mice, and in IN treated mice they were normalized in the olfactory bulb, or reduced in other parts of the brain. Immunohistochemical analysis showed extensive IDUA expression in all parts of the brain of ICV treated mice, while IT treated animals showed transduction that was primarily restricted to the hind brain with some sporadic labeling seen in the mid- and fore brain. At 6 months of age, animals were tested for spatial navigation, memory, and neurocognitive function in the Barnes maze; all treated animals were indistinguishable from normal heterozygous control animals, while untreated IDUA deficient animals exhibited significant learning and spatial navigation deficits. We conclude that IT and IN routes are acceptable and alternate routes of administration, respectively, of AAV vector delivery to the brain with effective IDUA expression, while all three routes of administration prevent the emergence of neurocognitive deficiency in a mouse MPS I model.

6.
Mol Genet Metab Rep ; 24: 100604, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32461912

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of alpha-L-iduronidase (IDUA), resulting in accumulation of heparan and dermatan sulfate glycosaminoglycans (GAGs). Individuals with the most severe form of the disease (Hurler syndrome) suffer from neurodegeneration, intellectual disability, and death by age 10. Current treatments for this disease include allogeneic hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). However, these treatments do not address CNS manifestations of the disease. In this study we compared the ability of intravenously administered AAV serotypes 9 and rh10 (AAV9 and AAVrh10) for delivery and expression of the IDUA gene in the CNS. Adult C57BL/6 MPS I mice were infused intravenously with either AAV9 or AAVrh10 vector encoding the human IDUA gene. Treated animals demonstrated supraphysiological levels and widespread restoration of IDUA enzyme activity in the plasma and all organs including the CNS. High levels of IDUA enzyme activity were observed in the plasma, brain and spinal cord ranging from 10 to 100-fold higher than heterozygote controls, while levels in peripheral organs were also high, ranging from 1000 to 10,000-fold higher than control animals. In general, levels of IDUA expression were slightly higher in peripheral organs for AAVrh10 administered animals although these differences were not significant except for the lung. Levels of IDUA expression between AAV 9 and rh10 were roughly equivalent in the brain. Urinary and tissue GAGs were significantly reduced starting at 3 weeks after vector infusion, with restoration of normal GAG levels by the end of the study in animals treated with either AAV9 or rh10. These results demonstrate that non-invasive intravenous AAV9 or AAVrh10-mediated IDUA gene therapy is a potentially effective treatment for both systemic and CNS manifestations of MPS I, with implications for the treatment of other metabolic and neurological diseases as well.

7.
Mol Ther ; 27(1): 178-187, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30528089

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is a severe disease due to deficiency of the lysosomal hydrolase α-L-iduronidase (IDUA) and the subsequent accumulation of the glycosaminoglycans (GAG), leading to progressive, systemic disease and a shortened lifespan. Current treatment options consist of hematopoietic stem cell transplantation, which carries significant mortality and morbidity risk, and enzyme replacement therapy, which requires lifelong infusions of replacement enzyme; neither provides adequate therapy, even in combination. A novel in vivo genome-editing approach is described in the murine model of Hurler syndrome. A corrective copy of the IDUA gene is inserted at the albumin locus in hepatocytes, leading to sustained enzyme expression, secretion from the liver into circulation, and subsequent uptake systemically at levels sufficient for correction of metabolic disease (GAG substrate accumulation) and prevention of neurobehavioral deficits in MPS I mice. This study serves as a proof-of-concept for this platform-based approach that should be broadly applicable to the treatment of a wide array of monogenic diseases.


Subject(s)
Gene Editing/methods , Genetic Therapy/methods , Mucopolysaccharidosis I/therapy , Zinc Finger Nucleases/metabolism , Animals , Disease Models, Animal , Enzyme Replacement Therapy , Female , Glycosaminoglycans/metabolism , Iduronidase/metabolism , Lysosomal Storage Diseases/drug therapy , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/therapy , Male , Mice , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/metabolism , Zinc Finger Nucleases/genetics
8.
Mol Ther ; 26(4): 1127-1136, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29580682

ABSTRACT

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disorder caused by deficiency of iduronate 2-sulfatase (IDS), leading to accumulation of glycosaminoglycans (GAGs) in tissues of affected individuals, progressive disease, and shortened lifespan. Currently available enzyme replacement therapy (ERT) requires lifelong infusions and does not provide neurologic benefit. We utilized a zinc finger nuclease (ZFN)-targeting system to mediate genome editing for insertion of the human IDS (hIDS) coding sequence into a "safe harbor" site, intron 1 of the albumin locus in hepatocytes of an MPS II mouse model. Three dose levels of recombinant AAV2/8 vectors encoding a pair of ZFNs and a hIDS cDNA donor were administered systemically in MPS II mice. Supraphysiological, vector dose-dependent levels of IDS enzyme were observed in the circulation and peripheral organs of ZFN+donor-treated mice. GAG contents were markedly reduced in tissues from all ZFN+donor-treated groups. Surprisingly, we also demonstrate that ZFN-mediated genome editing prevented the development of neurocognitive deficit in young MPS II mice (6-9 weeks old) treated at high vector dose levels. We conclude that this ZFN-based platform for expression of therapeutic proteins from the albumin locus is a promising approach for treatment of MPS II and other lysosomal diseases.


Subject(s)
Energy Metabolism , Gene Dosage , Gene Editing , Iduronate Sulfatase/genetics , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/metabolism , Phenotype , Animals , Biomarkers , Disease Models, Animal , Endonucleases/genetics , Endonucleases/metabolism , Enzyme Activation , Gene Transfer Techniques , Hepatocytes/metabolism , Introns , Mice , Mucopolysaccharidosis II/pathology , Mucopolysaccharidosis II/physiopathology , Zinc Fingers/genetics
9.
Hum Gene Ther ; 28(7): 576-587, 2017 07.
Article in English | MEDLINE | ID: mdl-28462595

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is a progressive, multi-systemic, inherited metabolic disease caused by deficiency of α-L-iduronidase (IDUA). Current treatments for this disease are ineffective in treating central nervous system (CNS) disease due to the inability of lysosomal enzymes to traverse the blood-brain barrier. A noninvasive and effective approach was taken in the treatment of CNS disease by intranasal administration of an IDUA-encoding adeno-associated virus serotype 9 (AAV9) vector. Adult IDUA-deficient mice aged 3 months were instilled intranasally with AAV9-IDUA vector. Animals sacrificed 5 months post instillation exhibited IDUA enzyme activity levels that were up to 50-fold that of wild-type mice in the olfactory bulb, with wild-type levels of enzyme restored in all other parts of the brain. Intranasal treatment with AAV9-IDUA also resulted in the reduction of tissue glycosaminoglycan storage materials in the brain. There was strong IDUA immunofluorescence staining of tissue sections observed in the nasal epithelium and olfactory bulb, but there was no evidence of the presence of transduced cells in other portions of the brain. This indicates that reduction of storage materials most likely occurred as a result of enzyme diffusion from the olfactory bulb and the nasal epithelium into deeper areas of the brain. At 8 months of age, neurocognitive testing using the Barnes maze to assess spatial navigation demonstrated that treated IDUA-deficient mice were no different from normal control animals, while untreated IDUA-deficient mice exhibited significant learning and navigation deficits. This novel, noninvasive strategy for intranasal AAV9-IDUA instillation could potentially be used to treat CNS manifestations of human MPS I.


Subject(s)
Central Nervous System/metabolism , Dependovirus/metabolism , Gene Transfer Techniques , Iduronidase/genetics , Iduronidase/therapeutic use , Mucopolysaccharidosis I/pathology , Mucopolysaccharidosis I/therapy , Nervous System Diseases/prevention & control , Administration, Intranasal , Animals , Central Nervous System/pathology , Central Nervous System/physiopathology , Cognition , Green Fluorescent Proteins/metabolism , Humans , Iduronidase/metabolism , Lysosomes/metabolism , Mice , Mucopolysaccharidosis I/physiopathology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Nervous System Diseases/pathology , Nervous System Diseases/physiopathology , Neurons/metabolism , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Transduction, Genetic
10.
Hum Gene Ther ; 28(8): 626-638, 2017 08.
Article in English | MEDLINE | ID: mdl-28478695

ABSTRACT

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive lysosomal disorder caused by defective iduronate-2-sulfatase (IDS), resulting in accumulation of heparan sulfate and dermatan sulfate glycosaminoglycans (GAGs). Enzyme replacement is the only Food and Drug Administration-approved therapy available for MPS II, but it is expensive and does not improve neurologic outcomes in MPS II patients. This study evaluated the effectiveness of adeno-associated virus (AAV) vector encoding human IDS delivered intracerebroventricularly in a murine model of MPS II. Supraphysiological levels of IDS were observed in the circulation (160-fold higher than wild type) for at least 28 weeks post injection and in most tested peripheral organs (up to 270-fold) at 10 months post injection. In contrast, only low levels of IDS were observed (7-40% of wild type) in all areas of the brain. Sustained IDS expression had a profound effect on normalization of GAG in all tested tissues and on prevention of hepatomegaly. Additionally, sustained IDS expression in the central nervous system (CNS) had a prominent effect in preventing neurocognitive deficit in MPS II mice treated at 2 months of age. This study demonstrates that CNS-directed, AAV9 mediated gene transfer is a potentially effective treatment for Hunter syndrome, as well as other monogenic disorders with neurologic involvement.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/genetics , Iduronate Sulfatase/genetics , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/psychology , Animals , Central Nervous System/metabolism , Cognition , Disease Models, Animal , Enzyme Activation , Female , Gene Expression , Gene Order , Genetic Vectors/administration & dosage , Glycosaminoglycans/metabolism , Humans , Iduronate Sulfatase/blood , Iduronate Sulfatase/metabolism , Male , Mice , Mucopolysaccharidosis II/blood , Mucopolysaccharidosis II/therapy , Neuropsychological Tests , Pilot Projects , Time Factors , Tissue Distribution , Transduction, Genetic
11.
Mol Ther Nucleic Acids ; 5: e279, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26784638

ABSTRACT

The Sleeping Beauty (SB) transposon system has been shown to enable long-term gene expression by integrating new sequences into host cell chromosomes. We found that the recently reported SB100x hyperactive transposase conferred a surprisingly high level of long-term expression after hydrodynamic delivery of luciferase-encoding reporter transposons in the mouse. We conducted dose-ranging studies to determine the effect of varying the amount of SB100x transposase-encoding plasmid (pCMV-SB100x) at a set dose of luciferase transposon and of varying the amount of transposon-encoding DNA at a set dose of pCMV-SB100x in hydrodynamically injected mice. Animals were immunosuppressed using cyclophosphamide in order to prevent an antiluciferase immune response. At a set dose of transposon DNA (25 µg), we observed a broad range of pCMV-SB100x doses (0.1-2.5 µg) conferring optimal levels of long-term expression (>10(11) photons/second/cm(2)). At a fixed dose of 0.5 µg of pCMV-SB100x, maximal long-term luciferase expression (>10(10) photons/second/cm(2)) was achieved at a transposon dose of 5-125 µg. We also found that in the linear range of transposon doses (100 ng), co-delivering the CMV-SB100x sequence on the same plasmid was less effective in achieving long-term expression than delivery on separate plasmids. These results show marked flexibility in the doses of SB transposon plus pCMV-SB100x that achieve maximal SB-mediated gene transfer efficiency and long-term gene expression after hydrodynamic DNA delivery to mouse liver.

12.
Hum Gene Ther ; 26(4): 232-43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25738323

ABSTRACT

Artemis is a single-stranded endonuclease, deficiency of which results in a radiation-sensitive form of severe combined immunodeficiency (SCID-A) most effectively treated by allogeneic hematopoietic stem cell (HSC) transplantation and potentially treatable by administration of genetically corrected autologous HSCs. We previously reported cytotoxicity associated with Artemis overexpression and subsequently characterized the human Artemis promoter with the intention to provide Artemis expression that is nontoxic yet sufficient to support immunodevelopment. Here we compare the human Artemis promoter (APro) with the moderate-strength human phosphoglycerate kinase (PGK) promoter and the strong human elongation factor-1α (EF1α) promoter to regulate expression of Artemis after ex vivo lentiviral transduction of HSCs in a murine model of SCID-A. Recipient animals treated with the PGK-Artemis vector exhibited moderate repopulation of their immune compartment, yet demonstrated a defective proliferative T lymphocyte response to in vitro antigen stimulation. Animals treated with the EF1α-Artemis vector displayed high levels of T lymphocytes but an absence of B lymphocytes and deficient lymphocyte function. In contrast, ex vivo transduction with the APro-Artemis vector supported effective immune reconstitution to wild-type levels, resulting in fully functional T and B lymphocyte responses. These results demonstrate the importance of regulated Artemis expression in immune reconstitution of Artemis-deficient SCID.


Subject(s)
Endonucleases/deficiency , Lentivirus/genetics , Nuclear Proteins/deficiency , Severe Combined Immunodeficiency/therapy , Animals , Endonucleases/biosynthesis , Endonucleases/genetics , Genetic Therapy , HEK293 Cells , Hematopoietic Stem Cell Transplantation , Humans , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Mice, SCID , NIH 3T3 Cells , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Severe Combined Immunodeficiency/immunology , Transcriptional Activation , Transduction, Genetic , Transgenes
13.
Hum Gene Ther ; 25(11): 955-65, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25093708

ABSTRACT

The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I-luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression.


Subject(s)
Immunity, Cellular , Luciferases, Firefly/immunology , Transposases/genetics , Adoptive Transfer , Animals , Humans , Luciferases, Firefly/biosynthesis , Luciferases, Firefly/genetics , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Transformation, Genetic
14.
Front Neuroanat ; 8: 66, 2014.
Article in English | MEDLINE | ID: mdl-25147505

ABSTRACT

We report the pattern of transgene expression across brain regions after intrathecal delivery of adeno-associated virus serotype 5 (AAV5). Labeling in hindbrain appeared to be primarily neuronal, and was detected in sensory nuclei of medulla, pontine nuclei, and all layers of cerebellar cortex. Expression in midbrain was minimal, and generally limited to isolated neurons and astrocytes in the cerebral peduncles. GFP immunoreactivity (-ir) in thalamus was most prominent in medial geniculate nucleus, and otherwise limited to posterior nuclei of the dorsal and lateral margins. Labeling was also observed in neurons and astrocytes of the hippocampal formation and amygdaloid complex. In the hippocampal formation, GFP-ir was found in neuronal cell bodies of the rostral ventral portion, but was largely restricted to fiber-like staining in the molecular layer of dentate gyrus and stratum lacunosum-moleculare of the rostral dorsal region. GFP-ir was seen in neurons and astroglia throughout caudal cortex, whereas in rostral regions of neocortex it was limited to isolated neurons and non-neuronal cells. Labeling was also present in olfactory bulb. These results demonstrate that intrathecal delivery of AAV5 vector leads to transgene expression in discrete CNS regions throughout the rostro-caudal extent of the neuraxis. A caudal-to-rostral gradient of decreasing GFP-ir was present in choroid plexus and Purkinje cells, suggesting that spread of virus through cerebrospinal fluid plays a role in the resulting transduction pattern. Other factors contributing to the observed expression pattern likely include variations in cell-surface receptors and inter-parenchymal space.

15.
PLoS Genet ; 9(4): e1003441, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23593033

ABSTRACT

We previously utilized a Sleeping Beauty (SB) transposon mutagenesis screen to discover novel drivers of HCC. This approach identified recurrent mutations within the Dlk1-Dio3 imprinted domain, indicating that alteration of one or more elements within the domain provides a selective advantage to cells during the process of hepatocarcinogenesis. For the current study, we performed transcriptome and small RNA sequencing to profile gene expression in SB-induced HCCs in an attempt to clarify the genetic element(s) contributing to tumorigenesis. We identified strong induction of Retrotransposon-like 1 (Rtl1) expression as the only consistent alteration detected in all SB-induced tumors with Dlk1-Dio3 integrations, suggesting that Rtl1 activation serves as a driver of HCC. While previous studies have identified correlations between disrupted expression of multiple Dlk1-Dio3 domain members and HCC, we show here that direct modulation of a single domain member, Rtl1, can promote hepatocarcinogenesis in vivo. Overexpression of Rtl1 in the livers of adult mice using a hydrodynamic gene delivery technique resulted in highly penetrant (86%) tumor formation. Additionally, we detected overexpression of RTL1 in 30% of analyzed human HCC samples, indicating the potential relevance of this locus as a therapeutic target for patients. The Rtl1 locus is evolutionarily derived from the domestication of a retrotransposon. In addition to identifying Rtl1 as a novel driver of HCC, our study represents one of the first direct in vivo demonstrations of a role for such a co-opted genetic element in promoting carcinogenesis.


Subject(s)
Liver Neoplasms , Pregnancy Proteins , Retroelements/genetics , Animals , Cell Transformation, Neoplastic , Chromosomes, Human, Pair 14/metabolism , Gene Expression Regulation, Neoplastic , Genomic Imprinting , Humans , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mutation , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Transposases/metabolism
16.
DNA Cell Biol ; 30(10): 751-61, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21663454

ABSTRACT

Artemis is an endonucleolytic enzyme involved in nonhomologous double-strand break repair and V(D)J recombination. Deficiency of Artemis results in a B- T- radiosensitive severe combined immunodeficiency, which may potentially be treatable by Artemis gene transfer into hematopoietic stem cells. However, we recently found that overexpression of Artemis after lentiviral transduction resulted in global DNA damage and increased apoptosis. These results imply the necessity of effecting natural levels of Artemis expression, so we isolated a 1 kilobase DNA sequence upstream of the human Artemis gene to recover and characterize the Artemis promoter (APro). The sequence includes numerous potential transcription factor-binding sites, and several transcriptional start sites were mapped by 5' rapid amplification of cDNA ends. APro and deletion constructs conferred significant reporter gene expression in vitro that was markedly reduced in comparison to expression regulated by the human elongation factor 1-α promoter. Ex vivo lentiviral transduction of an APro-regulated green fluorescent protein (GFP) construct in mouse marrow supported GFP expression throughout hematopoeitic lineages in primary transplant recipients and was sustained in secondary recipients. The human Artemis promoter thus provides sustained and moderate levels of gene expression that will be of significant utility for therapeutic gene transfer into hematopoeitic stem cells.


Subject(s)
5' Untranslated Regions , Bone Marrow Transplantation , Bone Marrow/metabolism , Gene Expression , Green Fluorescent Proteins/metabolism , Molecular Targeted Therapy/methods , Nuclear Proteins , Promoter Regions, Genetic , Severe Combined Immunodeficiency/therapy , Animals , Base Sequence , Binding Sites , Cell Line , DNA Repair/genetics , DNA-Binding Proteins , Endonucleases , Genes, Reporter , Green Fluorescent Proteins/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Lentivirus , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Protein Binding , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/metabolism , Transcription Factors/metabolism , Transduction, Genetic
17.
Mol Cancer ; 10(1): 14, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21310067

ABSTRACT

BACKGROUND: Metastatic colon cancer is one of the leading causes of cancer-related death worldwide, with disease progression and metastatic spread being closely associated with angiogenesis. We investigated whether an antiangiogenic gene transfer approach using the Sleeping Beauty (SB) transposon system could be used to inhibit growth of colorectal tumors metastatic to the liver. RESULTS: Liver CT26 tumor-bearing mice were hydrodynamically injected with different doses of a plasmid containing a transposon encoding an angiostatin-endostatin fusion gene (Statin AE) along with varying amounts of SB transposase-encoding plasmid. Animals that were injected with a low dose (10 µg) of Statin AE transposon plasmid showed a significant decrease in tumor formation only when co-injected with SB transposase-encoding plasmid, while for animals injected with a higher dose (25 µg) of Statin AE transposon, co-injection of SB transposase-encoding plasmid did not significantly affect tumor load. For animals injected with 10 µg Statin AE transposon plasmid, the number of tumor nodules was inversely proportional to the amount of co-injected SB plasmid. Suppression of metastases was further evident in histological analyses, in which untreated animals showed higher levels of tumor cell proliferation and tumor vascularization than animals treated with low dose transposon plasmid. CONCLUSION: These results demonstrate that hepatic colorectal metastases can be reduced using antiangiogenic transposons, and provide evidence for the importance of the transposition process in mediating suppression of these tumors.


Subject(s)
Angiostatins/genetics , Colorectal Neoplasms/pathology , Endostatins/genetics , Liver Neoplasms/therapy , Neovascularization, Pathologic/therapy , Transposases/genetics , Animals , Female , Gene Transfer Techniques , Genes, Reporter , Genetic Therapy , Kaplan-Meier Estimate , Liver Neoplasms/blood supply , Liver Neoplasms/secondary , Mice , Neoplasm Transplantation , Neovascularization, Pathologic/genetics , Recombinant Fusion Proteins/genetics , Transplantation, Heterologous , Tumor Burden
18.
Mol Pain ; 6: 31, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20509925

ABSTRACT

BACKGROUND: Neuronal transduction by adeno-associated viral (AAV) vectors has been demonstrated in cortex, brainstem, cerebellum, and sensory ganglia. Intrathecal delivery of AAV serotypes that transduce neurons in dorsal root ganglia (DRG) and spinal cord offers substantial opportunities to 1) further study mechanisms underlying chronic pain, and 2) develop novel gene-based therapies for the treatment and management of chronic pain using a non-invasive delivery route with established safety margins. In this study we have compared expression patterns of AAV serotype 5 (AAV5)- and AAV serotype 8 (AAV8)-mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. RESULTS: Intravenous mannitol pre-treatment significantly enhanced transduction of primary sensory neurons after direct lumbar puncture injection of AAV5 (rAAV5-GFP) or AAV8 (rAAV8-GFP) carrying the green fluorescent protein (GFP) gene. The presence of GFP in DRG neurons was consistent with the following evidence for primary afferent origin of the majority of GFP-positive fibers in spinal cord: 1) GFP-positive axons were evident in both dorsal roots and dorsal columns; and 2) dorsal rhizotomy, which severs the primary afferent input to spinal cord, abolished the majority of GFP labeling in dorsal horn. We found that both rAAV5-GFP and rAAV8-GFP appear to preferentially target large-diameter DRG neurons, while excluding the isolectin-B4 (IB4) -binding population of small diameter neurons. In addition, a larger proportion of CGRP-positive cells was transduced by rAAV5-GFP, compared to rAAV8-GFP. CONCLUSIONS: The present study demonstrates the feasibility of minimally invasive gene transfer to sensory neurons using direct lumbar puncture and provides evidence for differential targeting of subtypes of DRG neurons by AAV vectors.


Subject(s)
Dependovirus , Ganglia, Spinal/physiology , Gene Transfer Techniques , Genetic Therapy/methods , Pain Management , Sensory Receptor Cells/physiology , Animals , Green Fluorescent Proteins/genetics , Injections, Spinal , Male , Mice , Mice, Inbred C57BL , Spinal Puncture
19.
Hum Gene Ther ; 21(2): 210-20, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19761403

ABSTRACT

Two methods of systemic gene delivery have been extensively explored, using the mouse as a model system: hydrodynamic delivery, wherein a DNA solution equivalent in volume to 10% of the mouse weight is injected intravenously in less than 10 sec, and condensation of DNA with polyethylenimine (PEI) for standard intravenous infusion. Our goal in this study was to evaluate quantitatively the kinetics of gene expression, using these two methods for delivery of Sleeping Beauty transposons. Transposons carrying a luciferase expression cassette were injected into mice either hydrodynamically or after condensation with PEI at a PEI nitrogen-to-DNA phosphate ratio of 7. Gene expression in the lungs and liver after hydrodynamic delivery resulted in exponential decay with a half-life of about 35-40 hr between days 1 and 14 postinjection. The decay kinetics of gene expression after PEI-mediated gene delivery were more complex; an initial decay rate of 6 hr was followed by a more gradual loss of activity. Consequently, the liver became the primary site of gene expression about 4 days after injection of PEI-DNA, and by 14 days expression in the liver was 10-fold higher than in the lung. Overall levels of gene expression 2 weeks postinjection were 100- to 1000-fold lower after PEI-mediated delivery compared with hydrodynamic injection. These results provide insight into the relative effectiveness and organ specificity of these two methods of nonviral gene delivery when coupled with the Sleeping Beauty transposon system.


Subject(s)
DNA Transposable Elements/genetics , Gene Transfer Techniques , Liver/metabolism , Luciferases/metabolism , Lung/metabolism , Polyethyleneimine , Transposases , Animals , Female , Genetic Therapy/methods , Infusions, Intravenous , Luciferases/genetics , Mice , Mice, Inbred C57BL , Organ Specificity , Polyethyleneimine/administration & dosage , Polyethyleneimine/chemistry , Transgenes/genetics , Transposases/administration & dosage , Transposases/chemistry , Transposases/genetics
20.
Nat Protoc ; 2(12): 3146-52, 2007.
Article in English | MEDLINE | ID: mdl-18079714

ABSTRACT

The Sleeping Beauty (SB) transposon is an integrative nonviral plasmid system. Here, we describe a protocol for SB-mediated transgene delivery using DNA/polyethyleneimine (PEI) complexes for long-term expression in mouse lungs. This protocol can be used for delivery of any plasmid-based vector system to mouse lungs, although long-term transgene expression will be obtained only when using the SB transposon or other integrating vector systems. The stages of this protocol are preparation of DNA-PEI complexes and injection of the complexes into the lateral tail vein of mice. We also provide protocols for assessing transgene expression using in vivo bioluminescence imaging and enzymatic assay of lung homogenates. The procedure can be completed within 24 h, starting from preparation of DNA-PEI complexes to analysis of transient transgene expression.


Subject(s)
DNA Transposable Elements/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Lung/metabolism , Animals , Mice , Organ Specificity , Plasmids/genetics , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...