Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Appl Clin Med Phys ; 19(5): 573-579, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30076672

ABSTRACT

INTRODUCTION: The Gamma Knife® Icon™ comes with an image guidance system for tracking patient motion and correcting for inter- and intrafractional shifts, mainly used with frameless thermoplastic immobilization. The system consists of a cone-beam CT (CBCT) and a couch-mounted infrared camera (IFMM). We report our quality assurance program for Icon's image guidance system. METHODS: The manufacturer-provided tool is used for daily checks of CBCT positional precision. Catphan® phantom is used for monthly checks of CBCT image qualities (uniformity, contrast to noise ratio (CNR), and spatial resolution) for the two acquisition presets (low-dose and high-quality presets). On a semi-annual schedule, we use a frame tool to check the agreement of CBCT-based and Frame-based stereotactic space coordinates by comparing the locations of five attached ball bearings in CT-sim scans (Frame-based coordinates determination) and in Icon's CBCT scans. On an annual basis, the accuracy of IFMM, image registration, and delivery-after-shift are tested using a translational stage. A weighted CT dose index is measured annually with a pencil chamber in CTDI head phantom. RESULTS: The CBCT precision check: 0.12 ± 0.04 mm (maximum deviations average). CBCT image quality: spatial resolution range: [6,7] lp/cm (low), and [7,8] lp/cm (high); uniformity: 12.82 ± 0.69% (low), and 13.01 ± 0.69% (high); CNR: 1.07 ± 0.08 (low), and 1.69 ± 0.10 (high). Agreement of CBCT-based with Frame-based stereotactic coordinates range: [0.33, 0.66] mm. Accuracy of IFMM: 0.00 ± 0.12 mm (average) with 0.27 mm (max.); image registration: 0.03 ± 0.06 mm (average) with 0.23 mm (max.); and delivery-after-shift: 0.24 ± 0.09 mm (average) with 0.42 mm (max.). CTDIw : 2.3 mGy (low), and 5.7 mGy (high). CONCLUSIONS: The manufacturer-required QA checks together with additional user-defined checks are an important combination for a robust quality assurance program ensuring the safe use of Gamma Knife® Icon™'s image guidance and motion management features.


Subject(s)
Radiosurgery , Cone-Beam Computed Tomography , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy, Image-Guided
2.
J Appl Clin Med Phys ; 19(3): 159-167, 2018 May.
Article in English | MEDLINE | ID: mdl-29654662

ABSTRACT

In total body irradiation (TBI) utilizing large parallel-opposed fields, the manual placement of lead compensators has conventionally been used to compensate for the varying thickness throughout the body. The goal of this study is to pursue utilizing the modern electronic compensation (E-comp) technique to more accurately deliver dose to TBI patients. Bilateral parallel-opposed TBI treatment plans were created using E-comp for 15 patients for whom CT data had been previously acquired. A desirable fluence pattern was manually painted within each field to yield a uniform dose distribution. The conventional compensation technique was simulated within the treatment planning system (TPS) using a field-in-field (FIF) method. This allows for a meaningful evaluation of the E-comp technique in comparison to the conventional method. Dose-volume histograms (DVH) were computed for all treatment plans. The mean total body dose using E-comp deviates from the prescribed dose (4 Gy) by an average of 2.4%. The mean total body dose using the conventional compensation deviates from the prescribed dose by an average of 4.5%. In all cases, the mean body dose calculated using E-comp technique deviates less than 10% from that of conventional compensation. The average reduction in maximum dose using E-comp compared to that of the conventional method was 30.3% ± 6.6% (standard deviation). In all cases, the s-index for the E-comp technique was lower (10.5% ± 0.7%) than that of the conventional method (15.8% ± 4.4%), indicating a more homogenous dose distribution. In conclusion, a large reduction in maximum body dose can be seen using the proposed E-comp technique while still producing a mean body dose that accurately complies with the prescription dose. Dose homogeneity was quantified using s-index which demonstrated a reduction in hotspots with E-comp technique. Electronic compensation technique is capable of more accurately delivering a total body dose compared to conventional methods.


Subject(s)
Electronics, Medical , Lung/diagnostic imaging , Lung/radiation effects , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Whole-Body Irradiation/methods , Humans , Image Processing, Computer-Assisted/methods , Radiation Dosage , Radiotherapy, Intensity-Modulated/methods
3.
Stereotact Funct Neurosurg ; 95(5): 352-358, 2017.
Article in English | MEDLINE | ID: mdl-29017157

ABSTRACT

PURPOSE/OBJECTIVES: The purpose of this study was to evaluate the effect of the number of brain lesions for which stereotactic radiosurgery (SRS) was performed on the dose volume relationships in normal brain. MATERIALS AND METHODS: Brain tissue was segmented using the patient's pre-SRS MRI. For each plan, the following data points were recorded: total brain volume, number of lesions treated, volume of brain receiving 8 Gy (V8), V10, V12, and V15. RESULTS: A total of 225 Gamma Knife® treatments were included in this retrospective analysis. The number of lesions treated ranged from 1 to 29. The isodose for prescription ranged from 40 to 95% (mean 55%). The mean prescription dose to tumor edge was 18 Gy. The mean coverage, selectivity, conformity, and gradient index were 97.5%, 0.63, 0.56, and 3.5, respectively. The mean V12 was 9.5 cm3 (ranging from 0.5 to 59.29). There was no correlation between the number of lesions and brain V8, V12, V10, or V15. There was a direct and statistically significant relationship between the brain volume treated (V8, V10, V12, and V15) and total volume of tumors treated (p < 0.001). In our study, the integral dose to the brain exceeded 3 J when the total tumor volume exceeded 25 cm3. CONCLUSIONS: The number of metastatic brain lesions treated bears no significant relationship to total brain tissue volume treated when using SRS. The fact that the integral dose to the brain exceeded 3 J when the total tumor volume exceeded 25 cm3 is useful for establishing guidelines. Although standard practice has favored using whole brain radiation therapy in patients with more than 4 lesions, a significant amount of normal brain tissue may be spared by treating these patients with SRS. SRS should be carefully considered in patients with multiple brain lesions, with the emphasis on total brain volume involved rather than the number of lesions to be treated.


Subject(s)
Brain Neoplasms/radiotherapy , Brain/radiation effects , Radiation Dosage , Radiosurgery/methods , Adult , Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Male , Middle Aged , Radiosurgery/standards , Retrospective Studies , Tumor Burden/radiation effects
4.
J Appl Clin Med Phys ; 18(5): 143-151, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28727285

ABSTRACT

Linac downtime invariably impacts delivery of patients' scheduled treatments. Transferring a patient's treatment to an available linac is a common practice. Transferring a Volumetric Modulated Arc Therapy (VMAT) plan from a linac equipped with a standard-definition MLC to one equipped with a higher definition MLC is practical and routine in clinics with multiple MLC-equipped linacs. However, the reverse transfer presents a challenge because the high-definition MLC aperture shapes must be adapted for delivery with the lower definition device. We have developed an efficient method to adapt VMAT plans originally designed for a high-definition MLC to a standard-definition MLC. We present the dosimetric results of our adaptation method for head-and-neck, brain, lung, and prostate VMAT plans. The delivery of the adapted plans was verified using standard phantom measurements.


Subject(s)
Particle Accelerators , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/methods , Brain Neoplasms/radiotherapy , Head and Neck Neoplasms/radiotherapy , Humans , Lung Neoplasms/radiotherapy , Male , Organs at Risk , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/standards
5.
J Appl Clin Med Phys ; 18(5): 54-63, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28730652

ABSTRACT

PURPOSE: The aim of this study was to find an optimized configuration of collimator angle, couch angle, and starting tracking phase to improve the delivery performance in terms of MLC position errors, maximal MLC leaf speed, and total beam-on time of DCAT plans with motion tracking (4D DCAT). METHOD AND MATERIALS: Nontracking conformal arc plans were first created based on a single phase (maximal exhalation phase) of a respiratory motion phantom with a spherical target. An ideal model was used to simulate the target motion in superior-inferior (SI), anterior-posterior (AP), and left-right (LR) dimensions. The motion was decomposed to the MLC leaf position coordinates for motion compensation and generating 4D DCAT plans. The plans were studied with collimator angle ranged from 0° to 90°; couch angle ranged from 350°(-10°) to 10°; and starting tracking phases at maximal inhalation (θ=π/2) and exhalation (θ=0) phases. Plan performance score (PPS) evaluates the plan complexity including the variability in MLC leaf positions, degree of irregularity in field shape and area. PPS ranges from 0 to 1, where low PPS indicates a plan with high complexity. The 4D DCAT plans with the maximal and the minimal PPS were selected and delivered on a Varian TrueBeam linear accelerator. Gafchromic-EBT3 dosimetry films were used to measure the dose delivered to the target in the phantom. Gamma analysis for film measurements with 90% passing rate threshold using 3%/3 mm criteria and trajectory log files were analyzed for plan delivery accuracy evaluation. RESULTS: The maximal PPS of all the plans was 0.554, achieved with collimator angle at 87°, couch angle at 350°, and starting phase at maximal inhalation (θ=π/2). The maximal MLC leaf speed, MLC leaf errors, total leaf travel distance, and beam-on time were 20 mm/s, 0.39 ± 0.16 mm, 1385 cm, and 157 s, respectively. The starting phase, whether at maximal inhalation or exhalation had a relatively small contribution to PPS (0.01 ± 0.05). CONCLUSIONS: By selecting collimator angle, couch angle, and starting tracking phase, 4D DCAT plans with the maximal PPS demonstrated less MLC leaf position errors, lower maximal MLC leaf speed, and shorter beam-on time which improved the performance of 4D motion-tracking DCAT delivery.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Exhalation , Humans , Organ Motion , Particle Accelerators , Radiometry , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/instrumentation
6.
J Appl Clin Med Phys ; 18(3): 67-72, 2017 May.
Article in English | MEDLINE | ID: mdl-28419781

ABSTRACT

The Gamma Knife Icon comes with an integrated cone-beam CT (CBCT) for image-guided stereotactic treatment deliveries. The CBCT can be used for defining the Leksell stereotactic space using imaging without the need for the traditional invasive frame system, and this allows also for frameless thermoplastic mask stereotactic treatments (single or fractionated) with the Gamma Knife unit. In this study, we used an in-house built marker tool to evaluate the stability of the CBCT-based stereotactic space and its agreement with the standard frame-based stereotactic space. We imaged the tool with a CT indicator box using our CT-simulator at the beginning, middle, and end of the study period (6 weeks) for determining the frame-based stereotactic space. The tool was also scanned with the Icon's CBCT on a daily basis throughout the study period, and the CBCT images were used for determining the CBCT-based stereotactic space. The coordinates of each marker were determined in each CT and CBCT scan using the Leksell GammaPlan treatment planning software. The magnitudes of vector difference between the means of each marker in frame-based and CBCT-based stereotactic space ranged from 0.21 to 0.33 mm, indicating good agreement of CBCT-based and frame-based stereotactic space definition. Scanning 4-month later showed good prolonged stability of the CBCT-based stereotactic space definition.


Subject(s)
Cone-Beam Computed Tomography , Imaging, Three-Dimensional , Radiosurgery/instrumentation , Radiotherapy, Image-Guided/instrumentation , Humans
7.
J Appl Clin Med Phys ; 17(6): 276-282, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27929500

ABSTRACT

We report our technique for hemibody skin electron irradiation with a custom-made plywood shield. The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed at 50 cm from the patient. The shield is made of three layers of stan-dard 5/8'' thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield's transmission factor and the extent of the dose penumbra region for two different shield-phantom gaps. The shield transmission factor was found to be about 10%. The width of the penumbra (80%-to-20% dose falloff) was measured to be 12 cm for a 50 cm shield-phantom gap, and reduced slightly to 10 cm for a 35 cm shield-phantom gap. In vivo dosimetry of a real case confirmed the expected shielded area dose.


Subject(s)
Electrons/therapeutic use , Phantoms, Imaging , Radiation Protection/methods , Radiotherapy Planning, Computer-Assisted/methods , Skin Diseases/radiotherapy , Film Dosimetry , Humans , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated
8.
J Appl Clin Med Phys ; 17(5): 273-282, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27685140

ABSTRACT

Detection and accurate quantification of treatment delivery errors is important in radiation therapy. This study aims to evaluate the accuracy of DVH based QA in quantifying delivery errors. Eighteen previously treated VMAT plans (prostate, H&N, and brain) were randomly chosen for this study. Conventional IMRT delivery QA was done with the ArcCHECK diode detector for error-free plans and plans with the following modifications: 1) induced monitor unit differences up to ± 3.0%, 2) control point deletion (3, 5, and 8 control points were deleted for each arc), and 3) gantry angle shift (2° uniform shift clockwise and counterclockwise). 2D and 3D distance-to-agreement (DTA) analyses were performed for all plans with SNC Patient software and 3DVH software, respectively. Subsequently, accuracy of the reconstructed DVH curves and DVH parameters in 3DVH software were analyzed for all selected cases using the plans in the Eclipse treatment planning system as standard. 3D DTA analysis for error-induced plans generally gave high pass rates, whereas the 2D evaluation seemed to be more sensitive to detecting delivery errors. The average differences for DVH parameters between each pair of Eclipse recalculation and 3DVH prediction were within 2% for all three types of error-induced treatment plans. This illustrates that 3DVH accurately quantifies delivery errors in terms of actual dose delivered to the patients. 2D DTA analysis should be routinely used for clinical evaluation. Any concerns or dose discrepancies should be further analyzed through DVH-based QA for clinically relevant results and confirmation of a conventional passing-rate-based QA.


Subject(s)
Algorithms , Brain Neoplasms/radiotherapy , Head and Neck Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Quality Assurance, Health Care , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Male , Organs at Risk/radiation effects , Radiotherapy Dosage , Software
9.
Radiol Oncol ; 50(2): 232-7, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27247557

ABSTRACT

BACKGROUND: The purpose of the study was to analyse the dosimetric differences when using 10 MV instead of 6 MV for VMAT treatment plans for post-prostatectomy irradiation of the prostate bed. METHODS AND MATERIALS: Ten post-prostatectomy prostate bed irradiation cases previously treated using 6 MV with volumetric modulated arc therapy (VMAT) were re-planned using 10 MV with VMAT. Prescription dose was 66.6 Gy with 1.8 Gy per fraction for 37 daily fractions. The same structure set, number of arcs, field sizes, and minimum dose to the Planning Target Volume (PTV) were used for both 6 MV and 10 MV plans. Results were collected for dose to Organs at Risk (OAR) constraints, dose to the target structures, number of monitor units for each arc, Body V5, Conformity Index, and Integral Dose. The mean values were used to compare the 6 MV and 10 MV results. To determine the statistical significance of the results, a paired Student t test and power analysis was performed. RESULTS: Statistically significant lower mean values were observed for the OAR dose constraints for the rectum, bladder-Clinical Target Volume (bladder-CTV), left femoral head, and right femoral head. Also, statistically significant lower mean values were observed for the Body V5, Conformity Index, and Integral Dose. CONCLUSIONS: Several dosimetric benefits were observed when using 10 MV instead of 6 MV for VMAT based treatment plans. Benefits include sparing more dose from the OAR while still maintaining the same dose coverage to the PTV. Other benefits include lower Body V 5,Conformity Index, and Integral Dose.

10.
Radiol Oncol ; 50(1): 121-8, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-27069458

ABSTRACT

BACKGROUND: This study is to report 1) the sensitivity of intensity modulated radiation therapy (IMRT) QA method for clinical volumetric modulated arc therapy (VMAT) plans with multi-leaf collimator (MLC) leaf errors that will not trigger MLC interlock during beam delivery; 2) the effect of non-beam-hold MLC leaf errors on the quality of VMAT plan dose delivery. MATERIALS AND METHODS: Eleven VMAT plans were selected and modified using an in-house developed software. For each control point of a VMAT arc, MLC leaves with the highest speed (1.87-1.95 cm/s) were set to move at the maximal allowable speed (2.3 cm/s), which resulted in a leaf position difference of less than 2 mm. The modified plans were considered as 'standard' plans, and the original plans were treated as the 'slowing MLC' plans for simulating 'standard' plans with leaves moving at relatively lower speed. The measurement of each 'slowing MLC' plan using MapCHECK®2 was compared with calculated planar dose of the 'standard' plan with respect to absolute dose Van Dyk distance-to-agreement (DTA) comparisons using 3%/3 mm and 2%/2 mm criteria. RESULTS: All 'slowing MLC' plans passed the 90% pass rate threshold using 3%/3 mm criteria while one brain and three anal VMAT cases were below 90% with 2%/2 mm criteria. For ten out of eleven cases, DVH comparisons between 'standard' and 'slowing MLC' plans demonstrated minimal dosimetric changes in targets and organs-at-risk. CONCLUSIONS: For highly modulated VMAT plans, pass rate threshold (90%) using 3%/3mm criteria is not sensitive in detecting MLC leaf errors that will not trigger the MLC leaf interlock. However, the consequential effects of non-beam hold MLC errors on target and OAR doses are negligible, which supports the reliability of current patient-specific IMRT quality assurance (QA) method for VMAT plans.

11.
J Appl Clin Med Phys ; 17(2): 165-173, 2016 03 08.
Article in English | MEDLINE | ID: mdl-27074481

ABSTRACT

Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may substantially increase the pass rates for planar dose comparisons. Meanwhile, the types of uncertainties incorporated into the function (and their associated quantitative estimates, as described in the software user's manual) may not be an accurate estimation of actual measurement uncertainty, depending on the user's measurement conditions. Pass rates listed in published reports, comparisons between institutions or simply separate workstations, or comparisons with the calculation methods of other vendors, should clearly indicate whether or not the Measurement Uncertainty function is used, since it has the potential to substantially inflate pass rates for typical IMRT and VMAT dose planes.


Subject(s)
Algorithms , Neoplasms/radiotherapy , Phantoms, Imaging , Quality Assurance, Health Care/standards , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/standards , Humans , Radiotherapy Dosage , Software , Uncertainty
12.
J Appl Clin Med Phys ; 17(1): 12-21, 2016 01 08.
Article in English | MEDLINE | ID: mdl-26894361

ABSTRACT

The Eclipse treatment planning system uses a single dosimetric leaf gap (DLG) value to retract all multileaf collimator leaf positions during dose calculation to model the rounded leaf ends. This study evaluates the dosimetric impact of the 2D variation of DLG on clinical treatment plans based on their degree of fluence modulation. In-house software was developed to retrospectively apply the 2D variation of DLG to 61 clinically treated VMAT plans, as well as to several test plans. The level of modulation of the VMAT cases were determined by calculating their modulation complexity score (MCS). Dose measurements were done using the MapCHECK device at a depth of 5.0 cm for plans with and without the 2D DLG correction. Measurements were compared against predicted dose planes from the TPS using absolute 3%/3 mm and 2%/2 mm gamma criteria for test plans and for VMAT cases, respectively. The gamma pass rate for the 2 mm, 4 mm, and 6 mm sweep test plans increased by 23.2%, 28.7%, and 26.0%, respectively, when the measurements were corrected with 2D variation of DLG. The clinical anal VMAT cases, which had very high MLC modulation, showed the most improvement. The majority of the improvement occurred for doses created by the 1.0 cm width leaves for both the test plans and the VMAT cases. The gamma pass rates for the highly modulated head and neck (H&N) cases, moderately modulated prostate and esophageal cases, and minimally modulated brain cases improved only slightly when corrected with 2D variation of DLG. This is because these cases did not employ the 1.0 cm width leaves for dose calculation and delivery. These data suggest that, at the very least, the TPS plans with highly modulated fluences created by the 1.0 cm fields require 2D DLG correction. Incorporating the 2D variation of DLG for the highly modulated clinical treatment plans improves their planar dose gamma pass rates, especially for fields employing the outer 1.0 cm width MLC leaves. This is because there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value modeled by the TPS for dose calculation.


Subject(s)
Models, Theoretical , Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Radiotherapy Dosage
13.
J Appl Clin Med Phys ; 16(2): 5293, 2015 Mar 08.
Article in English | MEDLINE | ID: mdl-26103198

ABSTRACT

This study compares lung dose distributions for two common techniques of total body photon irradiation (TBI) at extended source-to-surface distance calculated with, and without, tissue density correction (TDC). Lung dose correction factors as a function of lateral thorax separation are approximated for bilateral opposed TBI (supine), similar to those published for anteroposterior-posteroanterior (AP-PA) techniques in AAPM Report 17 (i.e., Task Group 29). 3D treatment plans were created retrospectively for 24 patients treated with bilateral TBI, and for whom CT data had been acquired from the head to the lower leg. These plans included bilateral opposed and AP-PA techniques- each with and without - TDC, using source-to-axis distance of 377 cm and largest possible field size. On average, bilateral TBI requires 40% more monitor units than AP-PA TBI due to increased separation (26% more for 23 MV). Calculation of midline thorax dose without TDC leads to dose underestimation of 17% on average (standard deviation, 4%) for bilateral 6 MV TBI, and 11% on average (standard deviation, 3%) for 23 MV. Lung dose correction factors (CF) are calculated as the ratio of midlung dose (with TDC) to midline thorax dose (without TDC). Bilateral CF generally increases with patient separation, though with high variability due to individual uniqueness of anatomy. Bilateral CF are 5% (standard deviation, 4%) higher than the same corrections calculated for AP-PA TBI in the 6 MV case, and 4% higher (standard deviation, 2%) for 23 MV. The maximum lung dose is much higher with bilateral TBI (up to 40% higher than prescribed, depending on patient anatomy) due to the absence of arm tissue blocking the anterior chest. Dose calculations for bilateral TBI without TDC are incorrect by up to 24% in the thorax for 6 MV and up to 16% for 23 MV. Bilateral lung CF may be calculated as 1.05 times the values published in Table 6 of AAPM Report 17, though a larger patient pool is necessary to better quantify this trend. Bolus or customized shielding will reduce lung maximum dose in the anterior thorax.


Subject(s)
Head/radiation effects , Lung/radiation effects , Photons , Radiotherapy Planning, Computer-Assisted/methods , Thorax/radiation effects , Tomography, X-Ray Computed/methods , Whole-Body Irradiation/methods , Humans , Image Processing, Computer-Assisted/methods , Radiotherapy Dosage
14.
Med Dosim ; 40(3): 175-80, 2015.
Article in English | MEDLINE | ID: mdl-25524821

ABSTRACT

Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on the location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm(3)) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.


Subject(s)
Kidney/radiation effects , Organ Sparing Treatments/methods , Pancreatic Neoplasms/radiotherapy , Radiation Injuries/prevention & control , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Absorption, Radiation , Humans , Kidney/injuries , Radiation Exposure/analysis , Radiation Injuries/etiology , Radiation Protection/methods , Radiometry/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/adverse effects , Retrospective Studies , Treatment Outcome
15.
Med Phys ; 41(11): 111711, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25370625

ABSTRACT

PURPOSE: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. METHODS: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. RESULTS: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3-0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. CONCLUSIONS: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need to correct the TPS plans, especially those with high modulation (narrow dynamic MLC gap), with 2D variation of DLG.


Subject(s)
Radiation Dosage , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Humans , Motion , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Reproducibility of Results
16.
J Appl Clin Med Phys ; 15(5): 4839, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25207568

ABSTRACT

This investigation studies the use of volumetric-modulated arc therapy (VMAT) to deliver the following conceptual gynecological brachytherapy (BT) dose distributions: Type 1, traditional pear-shaped dose distribution with substantial dose gradients; Type 2, homogeneous dose distribution throughout PTV (BT prescription volume); and Type 3, increased dose to PTV without organ-at-risk (OAR) overdose. A tandem and ovoid BT treatment plan, with the prescription dose of 6 Gy to point A, was exported into the VMAT treatment planning system (TPS) and became the baseline for comparative analysis. The 200%, 150%, 130%, 100%, 75%, and 50% dose volumes were converted into structures for optimization and evaluation purposes. The 100% dose volume was chosen to be the PTV. Five VMAT plans (Type 1) were created to duplicate the Ir-192 tandem and ovoid inhomogeneous dose distribution. Another five VMAT plans (Type 2) were generated to deliver a homogeneous dose of 6 Gy to the PTV. An additional five VMAT plans (Type 3) were created to increase the dose to the PTV with a homogeneous dose distribution. In the first set of plans, the dose given to 99% of the 200%-100% dose volumes agreed within 2% of the BT plan on average. Additionally, it was found that the 75% dose volumes agreed within 5% of the BT plan and the 50% dose volumes agreed within 6.4% of the BT plan. In the second set of comparative analyses, the 100% dose volume was found to be within 1% of the original plan. Furthermore, the maximum increase of dose to the PTV in the last set of comparative analyses was 8 Gy with similar doses to OARs as the other VMAT plans. The maximum increase of dose was 2.50 Gy to the rectum and the maximum decrease of dose was 0.70 Gy to the bladder. Henceforth, VMAT was successful at reproducing brachytherapy dose distributions demonstrating that alternative dose distributions have the potential to be used in lieu of brachytherapy. It should also be noted that differences in radiobiology need to be further investigated.


Subject(s)
Brachytherapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Uterine Cervical Neoplasms/radiotherapy , Dose Fractionation, Radiation , Female , Humans , Radiotherapy Dosage , Treatment Outcome
17.
Med Phys ; 40(5): 051704, 2013 May.
Article in English | MEDLINE | ID: mdl-23635252

ABSTRACT

PURPOSE: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ["An effective correction algorithm for off-axis portal dosimetry errors," Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. METHODS: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. RESULTS: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in the 1D correction case, the 2D algorithm leaves the portal dosimetry process virtually unchanged in the central portion of the detector, and thus these correction algorithms are not needed for centrally located fields of moderate size (at least, in the case of 6 MV beam energy). CONCLUSION: The 2D correction improves the portal dosimetry results for those fields for which the 1D correction proves insufficient, especially in the inplane, off-axis regions of the detector. This 2D correction neglects the relatively smaller discrepancies that may be caused by backscatter from nonuniform machine components downstream from the detecting layer.


Subject(s)
Algorithms , Artifacts , Image Processing, Computer-Assisted/instrumentation , Radiometry/instrumentation , Electrical Equipment and Supplies , Humans
18.
J Appl Clin Med Phys ; 13(4): 3736, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-22766944

ABSTRACT

This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty-six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%-2%) for all three dosimetry modalities, except in the case of off-axis breast tangents. For these off-axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously-published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off-axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the Portal Vision Dosimetry system.


Subject(s)
Quality Assurance, Health Care , Radiotherapy Dosage/standards , Algorithms , Humans , Particle Accelerators , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods
19.
J Appl Clin Med Phys ; 14(1): 4110, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-23318374

ABSTRACT

The purpose of this study was to demonstrate the dosimetric potential of volumetric-modulated arc therapy (VMAT) for the treatment of patients with medically inoperable stage I/II non-small cell lung cancer (NSCLC) with stereotactic body radiation therapy (SBRT). Fourteen patients treated with 3D CRT with varying tumor locations, tumor sizes, and dose fractionation schemes were chosen for study. The prescription doses were 48 Gy in 4 fractions, 52.5 Gy in 5 fractions, 57.5 Gy in 5 fractions, and 60 Gy in 3 fractions for 2, 5, 1, and 6 patients, respectively. VMAT treatment plans with a mix of two to three full and partial noncoplanar arcs with 5°-25° separations were retrospectively generated using Eclipse version 10.0. The 3D CRT and VMAT plans were then evaluated by comparing their target dose, critical structure dose, high dose spillage, and low dose spillage as defined according to RTOG 0813 and RTOG 0236 protocols. In the most dosimetrically improved case, VMAT was able to decrease the dose from 17.35 Gy to 1.54 Gy to the heart. The D(2cm) decreased in 11 of 14 cases when using VMAT. The three that worsened were still within the acceptance criteria. Of the 14 3D CRT plans, seven had a D(2cm) minor deviation, while only one of the 14 VMAT plans had a D(2cm) minor deviation. The R(50%) improved in 13 of the 14 VMAT cases. The one case that worsened was still within the acceptance criteria of the RTOG protocol. Of the 14 3D CRT plans, seven had an R(50%) deviation. Only one of the 14 VMAT plans had an R(50%) deviation, but it was still improved compared to the 3D CRT plan. In this cohort of patients, no evident dosimetric compromises resulted from planning SBRT treatments with VMAT relative to the 3D CRT treatment plans actually used in their treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Treatment Outcome
20.
Med Phys ; 38(11): 6053-64, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22047370

ABSTRACT

PURPOSE: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics of various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. METHODS: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm(2) uniform grid, a 2 detector/cm(2) uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization techniques. RESULTS: For the prostate and head/neck cases studied, the pass rates obtained with gamma analysis of high density dose planes were 2%-5% higher than respective %/DTA composite analysis on average (ranging as high as 11%), depending on tolerances and normalization. Meanwhile, the pass rates obtained via local normalization were 2%-12% lower than with global maximum normalization on average (ranging as high as 27%), depending on tolerances and calculation method. Repositioning of simulated low-density sampled grids leads to a distribution of possible pass rates for each measured/calculated dose plane pair. These distributions can be predicted using a binomial distribution in order to establish confidence intervals that depend largely on the sampling density and the observed pass rate (i.e., the degree of difference between measured and calculated dose). These results can be extended to apply to 3D arrays of detectors, as well. CONCLUSIONS: Dose plane QA analysis can be greatly affected by choice of calculation metric and user-defined parameters, and so all pass rates should be reported with a complete description of calculation method. Pass rates for low-density arrays are subject to statistical uncertainty (vs. the high-density pass rate), but these sampling errors can be modeled using statistical confidence intervals derived from the sampled pass rate and detector density. Thus, pass rates for low-density array measurements should be accompanied by a confidence interval indicating the uncertainty of each pass rate.


Subject(s)
Radiation Dosage , Quality Control , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL