Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 116(10): 6075-106, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27144455

ABSTRACT

A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism.

2.
J Colloid Interface Sci ; 360(2): 606-16, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21601215

ABSTRACT

Three pyrrolidinium-based ionic liquids-N-dodecyl-N-methylpyrrolidinium bromide, N-butyl-N-octylpyrrolidinium bromide, and N-butyl-N-dodecylpyrrolodinium bromide-were synthesized and characterized by their decomposition temperatures (T(d)) measured by thermogravimetric analysis, and by their melting point (T(m)), glass transition (T(g)) and crystallization temperatures (T(cryst)) determined by differential scanning calorimetry. Their self-aggregation properties in aqueous solution were studied and their behavior is compared with that of analogous conventional cationic surfactants, namely tetra-alkylammonium bromide salts. The critical micellar concentration, cmcs were obtained by isothermal titration calorimetry (ITC); which were further validated by measurements of interfacial tension, fluorescence and NMR spectroscopy. Enthalpies of micellization were measured at three different temperatures using ITC. The Taylor dispersion method and DOSY NMR were used to determine diffusion coefficients of the ionic liquid surfactants in aqueous solution at 298.15K. Several correlations between structural features of the surfactant species, such as the number and size of their alkyl chains, and the thermodynamic quantities of micellization-expressed by experimental values of cmc, counter-ion binding fraction, Δ(mic)G°, Δ(mic)°, and Δ(mic)S°-are established. We could interpret the different contributions of the two alkyl side chains to the aggregation properties in terms of the balance of interactions in homogeneous and micellar phases, contributing to understanding the aggregation behavior of ionic liquids in water and the parallel between these systems and traditional ionic surfactants.

3.
J Phys Chem B ; 112(21): 6653-64, 2008 May 29.
Article in English | MEDLINE | ID: mdl-18461988

ABSTRACT

The solubility of halogen gases--fluorine, chlorine and bromine--has been determined experimentally in several fluorinated solvents between 283 and 323 K at atmospheric pressure. The solubility of chlorine was studied in perfluorooctane, perfluorohexane, perfluorohexylethane, perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, perfluoro-2-butyltetrahydrofuran, and perfluoroperhydrophenanthrene and was found to be on the order of 10(-2) in mole fraction. The solubility of fluorine in the studied fluorinated solvents at 298 K is 1 order of magnitude lower than the solubility of chlorine. The solubility of bromine was studied as a function of temperature in perfluorooctane, and it was found to be higher than that of chlorine but of the same order of magnitude. The experimental studies were complemented by molecular simulation calculations. The molecular force fields used for the halogen gases and for the fluorinated solvents were taken, when possible, from the literature. An intermolecular potential model had to be developed for perfluoro-2-butyltetrahydrofuran, with a functional form of the Lennard-Jones plus point charges type. The solubility of the three gases was calculated by molecular simulation using Widom test-particle insertion. Dissimilar interaction parameters of 0.89 and 0.75 in the Lennard-Jones well depths between the solute and the solvent had to be introduced to reach agreement with the experimental results for chlorine and fluorine solubilities, respectively. The structure of the solutions was studied by analysis of solute-solvent radial distribution functions. It was found that the preferential solvation sites for the halogen gases are the terminal CF3 groups of the different fluorinated solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...