Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 918: 170619, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38311075

ABSTRACT

Hydrocarbon (HC) contamination in groundwater (GW) is a widespread environmental issue. Dissolved hydrocarbons in water are commonly utilized as an energy source by natural microbial communities, which can produce water soluble intermediate metabolite compounds, herein referred to as oxygen containing organic compounds (OCOCs), before achieving complete mineralization. This review aims to provide a comprehensive assessment of the literature focused on the state of the science for OCOCs detected and measured in GW samples collected from petroleum contaminated aquifers. In this review, we discuss and evaluate two hypotheses investigating OCOC formation, which are major points of contention in the freshwater oil spill community that need to be addressed. We reviewed over 150 articles compiling studies investigating OCOC formation and persistence to uncover knowledge gaps in the literature and studies that recommend quantitative and qualitative measurements of OCOCs in petroleum-contaminated aquifers. This review is essential because no consensus exists regarding specific compounds and related concerns. We highlight the knowledge gaps to progressing the discussion of hydrocarbon conversion products.

2.
Environ Sci Technol ; 57(48): 20097-20106, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37955971

ABSTRACT

Plastics are accumulating on Earth, including at sea. The photodegradation of microplastics floating in seawater produces dissolved organic matter (DOM), indicating that sunlight can photodissolve microplastics at the sea surface. To characterize the chemistry of DOM produced as microplastics photodissolve, three microplastics that occur in surface waters, polyethylene (PE), polypropylene (PP), and expanded polystyrene (EPS), were incubated floating on seawater in both the light and the dark. We present the molecular signatures of the DOM produced during these incubations, as determined via ultrahigh-resolution mass spectrometry. Zero to 12 products were identified in the dark, whereas 319-705 photoproducts were identified in the light. Photoproduced DOM included oxygen atoms, indicating that soluble, oxygen-containing organics were formed as plastics photodegrade. PP and PE plastics have hydrogen-to-carbon (H/C) ratios of 2 and generated DOM with average H/C values of 1.7 ± 0.1 to 1.8 ± 0.1, whereas EPS, which has an H/C of 1, generated DOM with an average H/C of 0.9 ± 0.2, indicating the stoichiometry of photoproduced DOM was related to the stoichiometry of the photodegrading polymer. The photodissolution of plastics produced hundreds of photoproducts with varying elemental stoichiometries, indicating that a single abiotic process (photochemistry) can generate hundreds of different chemicals from stoichiometrically monotonous polymers.


Subject(s)
Microplastics , Plastics , Plastics/chemistry , Dissolved Organic Matter , Seawater , Polystyrenes , Polymers , Polypropylenes , Polyethylene , Carbon , Oxygen
4.
J Hazard Mater ; 459: 132312, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37604033

ABSTRACT

Elevated non-volatile dissolved organic carbon (NVDOC) concentrations in groundwater (GW) monitoring wells under oil-contaminated hydrophobic soils originating from a pipeline rupture at the National Crude Oil Spill & Natural Attenuation Research Site near Bemidji, MN are documented. We hypothesized the elevated NVDOC is comprised of water-soluble photooxidation products transported from the surface to the aquifer. We use field and laboratory samples in combination with complementary analytical methods to test this hypothesis and determine the biological response to these products. Observations from optical spectroscopy and ultrahigh-resolution mass spectrometry reveal a significant correlation between the chemical composition of NVDOC leached from photochemically weathered soils and GW monitoring wells with high NVDOC concentrations measured in the aquifer beneath the contaminated soil. Conversely, the chemical composition from the uncontaminated soil photoleachate matches the NVDOC observed in the uncontaminated wells. Contaminated GW and photodissolution leachates from contaminated soil activated biological targets indicative of xenobiotic metabolism and exhibited potential for adverse effects. Newly formed hydrocarbon oxidation products (HOPs) from fresh oil could be distinguished from those downgradient. This study illustrates another pathway for dissolved HOPs to infiltrate GW and potentially affect human health and the environment.


Subject(s)
Groundwater , Petroleum , Humans , Dissolved Organic Matter , Hydrocarbons , Receptors, Cytoplasmic and Nuclear , Soil
5.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 429-450, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37314877

ABSTRACT

Despite the fact that oil chemistry and oils spills have been studied for many years, there are still emerging techniques and unknown processes to be explored. The 2010 Deepwater Horizon oil spill in the Gulf of Mexico resulted in a revival of oil spill research across a wide range of fields. These studies provided many new insights, but unanswered questions remain. Over 1,000 journal articles related to the Deepwater Horizon spill are indexed by the Chemical Abstract Service. Numerous ecological, human health, and organismal studies were published. Analytical tools applied to the spill include mass spectrometry, chromatography, and optical spectroscopy. Owing to the large scale of studies, this review focuses on three emerging areas that have been explored but remain underutilized in oil spill characterization: excitation-emission matrix spectroscopy, black carbon analysis, and trace metal analysis using inductively coupled plasma mass spectrometry.

6.
Water Res ; 229: 119357, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36455459

ABSTRACT

Anthropogenic conversion of forests and wetlands to agricultural and urban landcovers impacts dissolved organic matter (DOM) within streams draining these catchments. Research on how landcover conversion impacts DOM molecular level composition and bioavailability, however, is lacking. In the Upper Mississippi River Basin (UMRB), water from low-order streams and rivers draining one of three dominant landcovers (forest, agriculture, urban) was incubated for 28 days to determine bioavailable DOC (BDOC) concentrations and changes in DOM composition. The BDOC concentration averaged 0.49 ± 0.30 mg L-1 across all samples and was significantly higher in streams draining urban catchments (0.72 ± 0.34 mg L-1) compared to streams draining agricultural (0.28 ± 0.15 mg L-1) and forested (0.47 ± 0.17 mg L-1) catchments. Percent BDOC was significantly greater in urban (10% ± 4.4%) streams compared to forested streams (5.6% ± 3.2%), corresponding with greater relative abundances of aliphatic and N-containing aliphatic compounds in urban streams. Aliphatic compound relative abundance decreased across all landcovers during the bioincubation (average -4.1% ± 10%), whereas polyphenolics and condensed aromatics increased in relative abundance across all landcovers (average of +1.4% ± 5.9% and +1.8% ± 10%, respectively). Overall, the conversion of forested to urban landcover had a larger impact on stream DOM bioavailability in the UMRB compared to conversion to agricultural landcover. Future research examining the impacts of anthropogenic landcover conversion on stream DOM composition and bioavailability needs to be expanded to a range of spatial scales and to different ecotones, especially with continued landcover alterations.


Subject(s)
Dissolved Organic Matter , Forests , Biological Availability , Agriculture , Rivers
7.
Sci Adv ; 8(27): eabn0035, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35857452

ABSTRACT

The microbial carbon pump (MCP) hypothesis suggests that successive transformation of labile dissolved organic carbon (DOC) by prokaryotes produces refractory DOC (RDOC) and contributes to the long-term stability of the deep ocean DOC reservoir. We tested the MCP by exposing surface water from a deep convective region of the ocean to epipelagic, mesopelagic, and bathypelagic prokaryotic communities and tracked changes in dissolved organic matter concentration, composition, and prokaryotic taxa over time. Prokaryotic taxa from the deep ocean were more efficient at consuming DOC and producing RDOC as evidenced by greater abundance of highly oxygenated molecules and fluorescent components associated with recalcitrant molecules. This first empirical evidence of the MCP in natural waters shows that carbon sequestration is more efficient in deeper waters and suggests that the higher diversity of prokaryotes from the rare biosphere holds a greater metabolic potential in creating these stable dissolved organic compounds.

8.
Mass Spectrom Rev ; 41(2): 215-239, 2022 03.
Article in English | MEDLINE | ID: mdl-33368436

ABSTRACT

Natural organic matter (NOM) is a complex mixture of biogenic molecules resulting from the deposition and transformation of plant and animal matter. It has long been recognized that NOM plays an important role in many geological, geochemical, and environmental processes. Of particular concern is the fate of NOM in response to a warming climate in environments that have historically sequestered carbon (e.g., peatlands and swamps) but may transition to net carbon emitters. In this review, we will highlight developments in the application of high-field Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) in identifying the individual components of complex NOM mixtures, focusing primarily on the fraction that is dissolved in natural waters (dissolved organic matter or DOM). We will first provide some historical perspective on developments in FTICR technology that made molecular-level characterizations of DOM possible. A variety of applications of the technique will then be described, followed by our view of the future of high-field FTICR MS in carbon cycling research, including a particularly exciting metabolomic approach.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods
9.
J Hazard Mater ; 424(Pt C): 127598, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34798546

ABSTRACT

Chemical herders and in-situ burning (ISB) are designed to mitigate the effects that oil spills may have on the high latitude marine environment. Little information exists on the water solubilization of petroleum residues stemming from chemically herded ISB and whether these bioavailable compounds have measurable impacts on marine biota. In this experiment, we investigated the effects of Siltech OP40 and crude oil ISB on a) petroleum-derived dissolved organic matter (DOMHC) composition and b) seawater microbial community diversity over 28 days at 4 °C in aquarium-scale mesocosms. Ultra-high resolution mass spectrometry and fluorescence spectroscopy revealed increases in aromaticity over time, with ISB and ISB+OP40 samples having higher % aromatic classes in the initial incubation periods. ISB+OP40 contained a nearly 12-fold increase in the number of DOMHC formulae relative to those before ISB. 16S rRNA gene sequencing identified differences in microbial alpha diversity between seawater, ISB, OP40, and ISB+OP40. Microbial betadiversity shifts were observed that correlated strongly with aromatic/condensed relative abundance and incubation time. Proteobacteria, specifically from the genera Marinomonas and Perlucidibaca experienced -22 and +24 log2-fold changes in ISB+OP40 vs. seawater, respectively. These findings provide an important opportunity to advance our understanding of chemical herders and ISB in the high latitude marine environment.


Subject(s)
Microbiota , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Dissolved Organic Matter , RNA, Ribosomal, 16S/genetics , Seawater
10.
Global Biogeochem Cycles ; 35(1): e2020GB006719, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33519064

ABSTRACT

Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with 28-day incubations. We incubated late-summer stream water from 23 locations nested in seven northern or high-altitude regions in Asia, Europe, and North America. DOM loss ranged from 3% to 52%, showing a variety of longitudinal patterns within stream networks. DOM optical properties varied widely, but DOM showed compositional similarity based on Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis. Addition of acetate and nutrients decreased bulk DOM mineralization (i.e., negative priming), with more negative effects on biodegradable DOM but neutral or positive effects on stable DOM. Unexpectedly, acetate and nutrients triggered breakdown of colored DOM (CDOM), with median decreases of 1.6% in the control and 22% in the amended treatment. Additionally, the uptake of added acetate was strongly limited by nutrient availability across sites. These findings suggest that biolabile DOM and nutrients released from degrading permafrost may decrease background DOM mineralization but alter stoichiometry and light conditions in receiving waterbodies. We conclude that priming and nutrient effects are coupled in northern aquatic ecosystems and that quantifying two-way interactions between DOM properties and environmental conditions could resolve conflicting observations about the drivers of DOM in permafrost zone waterways.

12.
J Hazard Mater ; 402: 123998, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254831

ABSTRACT

Relationships between dissolved organic matter (DOM) reactivity and chemical composition in a groundwater plume containing petroleum-derived DOM (DOMHC) were examined by quantitative and qualitative measurements to determine the source and chemical composition of the compounds that persist downgradient. Samples were collected from a transect down the core of the plume in the direction of groundwater flow. An exponential decrease in dissolved organic carbon concentration resulting from biodegradation along the transect correlated with a continuous shift in fluorescent DOMHC from shorter to longer wavelengths. Moreover, ultrahigh resolution mass spectrometry showed a shift from low molecular weight (MW) aliphatic, reduced compounds to high MW, unsaturated (alicyclic/aromatic), high oxygen compounds that are consistent with carboxyl-rich alicyclic molecules. The degree of condensed aromaticity increased downgradient, indicating that compounds with larger, conjugated aromatic core structures were less susceptible to biodegradation. Nuclear magnetic resonance spectroscopy showed a decrease in alkyl (particularly methyl) and an increase in aromatic/olefinic structural motifs. Collectively, data obtained from the combination of these complementary analytical techniques indicated that changes in the DOMHC composition of a groundwater plume are gradual, as relatively low molecular weight (MW), reduced, aliphatic compounds from the oil source were selectively degraded and high MW, alicyclic/aromatic, oxidized compounds persisted.


Subject(s)
Groundwater , Petroleum , Water Pollutants, Chemical , Biodegradation, Environmental , Hydrocarbons , Water Pollutants, Chemical/analysis
13.
Front Microbiol ; 11: 1753, 2020.
Article in English | MEDLINE | ID: mdl-32849382

ABSTRACT

Permafrost is an extreme habitat yet it hosts microbial populations that remain active over millennia. Using permafrost collected from a Pleistocene chronosequence (19 to 33 ka), we hypothesized that the functional genetic potential of microbial communities in permafrost would reflect microbial strategies to metabolize permafrost soluble organic matter (OM) in situ over geologic time. We also hypothesized that changes in the metagenome across the chronosequence would correlate with shifts in carbon chemistry, permafrost age, and paleoclimate at the time of permafrost formation. We combined high-resolution characterization of water-soluble OM by Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS), quantification of organic anions in permafrost water extracts, and metagenomic sequencing to better understand the relationships between the molecular-level composition of potentially bioavailable OM, the microbial community, and permafrost age. Both age and paleoclimate had marked effects on both the molecular composition of dissolved OM and the microbial community. The relative abundance of genes associated with hydrogenotrophic methanogenesis, carbohydrate active enzyme families, nominal oxidation state of carbon (NOSC), and number of identifiable molecular formulae significantly decreased with increasing age. In contrast, genes associated with fermentation of short chain fatty acids (SCFAs), the concentration of SCFAs and ammonium all significantly increased with age. We present a conceptual model of microbial metabolism in permafrost based on fermentation of OM and the buildup of organic acids that helps to explain the unique chemistry of ancient permafrost soils. These findings imply long-term in situ microbial turnover of ancient permafrost OM and that this pooled biolabile OM could prime ancient permafrost soils for a larger and more rapid microbial response to thaw compared to younger permafrost soils.

15.
Glob Chang Biol ; 26(3): 1374-1389, 2020 03.
Article in English | MEDLINE | ID: mdl-31665558

ABSTRACT

The flux and composition of carbon (C) from land to rivers represents a critical component of the global C cycle as well as a powerful integrator of landscape-level processes. In the Congo Basin, an expansive network of streams and rivers transport and cycle terrigenous C sourced from the largest swathe of pristine tropical forest on Earth. Increasing rates of deforestation and conversion to agriculture in the Basin are altering the current regime of terrestrial-to-aquatic biogeochemical cycling of C. To investigate the role of deforestation on dissolved organic and inorganic C (DOC and DIC, respectively) biogeochemistry in the Congo Basin, six lowland streams that drain catchments of varying forest proportion (12%-77%) were sampled monthly for 1 year. Annual mean concentrations of DOC exhibited an asymptotic response to forest loss, while DIC concentrations increased continuously with forest loss. The isotopic signature of DIC became significantly more enriched with deforestation, indicating a shift in source and processes controlling DIC production. The composition of dissolved organic matter (DOM), as revealed by ultra-high-resolution mass spectrometry, indicated that deforested catchments export relatively more aliphatic and heteroatomic DOM sourced from microbial biomass in soils. The DOM compositional results imply that DOM from the deforested sites is more biolabile than DOM from the forest, consistent with the corresponding elevated stream CO2 concentrations. In short, forest loss results in significant and comprehensive shifts in the C biogeochemistry of the associated streams. It is apparent that land-use conversion has the potential to dramatically affect the C cycle in the Congo Basin by reducing the downstream flux of stable, vascular-plant derived DOC while increasing the transfer of biolabile soil C to the atmosphere.


Subject(s)
Carbon , Rivers , Agriculture , Congo , Forests
16.
Water Res ; 166: 115048, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31518733

ABSTRACT

Shallow lakes are hotspots for carbon processing and important natural sources of methane (CH4) emission. Ebullitive CH4 flux may constitute the overwhelming majority of total CH4 flux, but the episodic nature of ebullition events makes determining both quantity and the controlling factors challenging. Here we used the world's longest running shallow-lake mesocosm facility, where the experimental treatments are low and high nutrients crossed with three temperatures, to investigate the quantity and drivers of CH4 ebullition. The mean CH4 ebullition flux in the high nutrient treatment (41.5 ±â€¯52.3 mg CH4-C m-2 d-1) mesocosms was significantly larger than in the low nutrient treatment (3.6 ±â€¯5.4 mg CH4-C m-2 d-1) mesocosms, varying with temperature scenarios. Over eight weeks from June to August covered here warming resulted in a weak, but insignificant enhancement of CH4 ebullition. We found significant positive relationships between ebullition and chlorophyll-a, dissolved organic carbon (DOC), biodegradable DOC, δ2H, δ18O and δ13C-DOC, autochthonous dissolved organic matter (DOM) fluorescent components, and a fraction of lipids, proteins, and lignins revealed using ultrahigh-resolution mass spectrometry, and a negative relationship between ebullitive CH4 flux and the percentage volume inhabited of macrophytes. A 24 h laboratory bio-incubation experiment performed at room temperature (20 ±â€¯2 °C) in the dark further revealed a rapid depletion of algal-DOM concurrent with a massive increased CH4 production, whereas soil-derived DOM had a limited effect on CH4 production. We conclude that eutrophication likely induced the loss of macrophytes and increase in algal biomass, and the resultant accumulation algal derived bio-labile DOM potentially drives enhanced outgassing of ebullitive CH4 from the shallow-lake mesocosms.


Subject(s)
Lakes , Methane , Carbon , Eutrophication , Temperature
17.
Nat Geosci ; 12(7): 541-546, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31338120

ABSTRACT

In the mostly pristine Congo Basin, agricultural land-use change has intensified in recent years. One potential and understudied consequence of this deforestation and conversion to agriculture is the mobilization and loss of organic matter from soils to rivers as dissolved organic matter. Here, we quantify and characterize dissolved organic matter sampled from 19 catchments of varying deforestation extent near Lake Kivu over a two-week period during the wet season. Dissolved organic carbon from deforested, agriculturally-dominated catchments was older (14C age: ~1.5kyr) and more biolabile than from pristine forest catchments. Ultrahigh-resolution mass spectrometry revealed that this aged organic matter from deforested catchments was energy-rich and chemodiverse, with higher proportions of nitrogen- and sulfur-containing formulae. Given the molecular composition and biolability, we suggest that organic matter from deforested landscapes is preferentially respired upon disturbance, resulting in elevated in-stream concentrations of carbon dioxide. We estimate that while deforestation reduces the overall flux of dissolved organic carbon by ~56%, it does not significantly change the yield of biolabile dissolved organic carbon. Ultimately, the exposure of deeper soil horizons through deforestation and agricultural expansion releases old, previously stable, and biolabile soil organic carbon into the modern carbon cycle via the aquatic pathway.

18.
Environ Sci Technol ; 53(14): 8235-8243, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31194531

ABSTRACT

To examine the molecular-level composition and acute toxicity per unit carbon of the petroleum-derived dissolved organic matter (DOMHC) produced via photo-oxidation, heavy and light oils were irradiated over seawater with simulated sunlight. Increases in dissolved organic carbon concentrations as a function of time were associated with changes in the DOMHC composition and acute toxicity per unit carbon. Parallel factor analysis showed that the fluorescent dissolved organic matter (FDOM) composition produced from the heavy oil became more blue-shifted over time, while the light oil produced a mixture of blue- and red-shifted components similar to FDOM signatures. Ultrahigh-resolution mass spectrometry reveals that the composition of the DOMHC produced from both heavy and light oils was initially relatively reduced, with low O/C. With time, the composition of the DOMHC produced from the heavy oil shifted to unsaturated, high-oxygen compounds, while that produced from the light oil comprised a range of high O/C aliphatic, unsaturated, and aromatic compounds. Microtox assays suggest that the DOMHC initially produced is the most toxic (62% inhibition); however, after 24 h, a rapid decrease in toxicity decreased linearly to 0% inhibition for the heavy DOMHC and 12% inhibition for the light DOMHC at extended exposure periods.


Subject(s)
Petroleum , Water Pollutants, Chemical , Carbon , Organic Chemicals , Seawater
19.
Sci Total Environ ; 662: 769-778, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30708292

ABSTRACT

Estuaries support the livelihood of ~75% of the world's population and maintain high primary production in coastal waters, which are often subjected to strong tides and anthropogenic disturbances. There is a paucity of information on how the optical composition and bioavailability of chromophoric dissolved organic matter (CDOM) are influenced by tidal oscillations in estuaries with highly urbanized surrounding areas. We examined the semi-diurnal Qiantang Bore, one of the Earth's three most predominant tide bores, and found that dissolved organic carbon (DOC), CDOM absorption a(254) and terrestrial humic-like C1, tryptophan-like C2 and C5, fulvic-like C3, and microbial humic-like C4 decreased markedly with increasing salinity. This suggests that physical mixing of riverine freshwater and saltwater can shape the optical composition of CDOM in the estuary. This was supported by the semi-diurnally and hourly observations at Zhijiang (salinity ~0.1‰, upstream of the estuary) that DOC, bioavailable DOC (BDOC), C1-C2, and C4-C5 increased markedly with decreasing tidal level, while DOC and C1-C5 increased notably with increasing salinity. We further found δ18O was enriched with increasing tidal level, while tryptophan-like C2 and C5, and fulvic-like C3 decreased significantly with increasing tidal level at Zhapu (salinity ~7‰, downstream of the estuary). Furthermore, DOC, BDOC, C1, and C4 decreased, while δ18O and C3 increased markedly with increasing salinity. Further evidences come from the notably lower mean first principal component (PC1) scores at Zhijiang and Zhapu, both positively associated with anthropogenic tryptophan-like inputs, were observed during ebb than during flood tides, and PC1 at Zhijiang increased notably with increasing salinity. We conclude that anthropogenic inputs contributed primarily to the CDOM pool in the estuary and are mediated by the physical mixing of riverine freshwater and seawater, and ebb tides are often associated with enhanced anthropogenic CDOM with relatively high bioavailability.

SELECTION OF CITATIONS
SEARCH DETAIL
...