Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(3): 1752-1760, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29266155

ABSTRACT

Coordination of uranyl (U(vi)) with carboxylate groups on functionalized graphene oxide (GO) surfaces has been shown to alter the reduction potential of the sorbed uranium ion. A quantitative measure of the reduction potential and qualitative estimation of sorption/desorption processes were conducted using cyclic voltammetry, and the proposed coordination environment was determined using the surface sensitive attenuated total reflection mode of infrared spectroscopy (ATR-FTIR). GO is a nanostructured material possessing a large amount of oxygen-containing functional groups both on basal planes and at the edges, which can form strong surface complexes with radionuclides. The presence of these functional groups on the surface of GO allows efficient immobilization of uranium due to sorption of uranyl (UO22+) to carboxylate, hydroxide, or sulfonate functional groups and the potential for enhanced reduction of U(vi) to more strongly sorbing and insoluble U(iv). Herein, binding of U(vi) to carboxylate groups on the GO surface is proposed as the primary sorption mechanism based on the FTIR study. Furthermore, the coordination of uranium with the surface increases the reduction potential of the U(vi)/U(iv) redox couple as compared to the case of the aqueous U(vi)/U(iv) species. This is consistent with the alteration of the electronic structure of the sorbed ion, which can be determined in our case due to the use of a GO-coated working electrode. Thus, GO-coated glassy carbon electrodes and other semi-conducting electrodes with high ion sorption capacities may provide a means of examining the oxidation/reduction potentials of sorbed ions.

2.
Nanoscale ; 9(18): 6145-6150, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28447704

ABSTRACT

Graphene has attracted much attention as an impermeable membrane and a protective coating against oxidation. While many theoretical studies have shown that defect-free graphene is impermeable, in reality graphene inevitably has defects in the form of grain boundaries and vacancies. Here, we study the effects of N-dopants on the impermeability of few-layered graphene (FLG) grown on copper using chemical vapor deposition. The grain boundaries in FLG have minimal impact on their permeability to oxygen as they do not provide a continuous channel for gas transport due to high tortuosity. However, we experimentally show that the N-dopants in FLG display multiple configurations that create structural imperfections to selectively allow gas molecules to permeate. We used a comprehensive array of tools including Raman spectroscopy, X-ray photoelectron spectroscopy, optically stimulated electron emission measurements, and density functional theory of N-doped graphene on copper to elucidate the effects of dopant configuration on the impermeability of graphene. Our results clearly show that oxygen can permeate through graphene with non-graphitic nitrogen dopants that create pores in graphene and oxidize the underlying Cu substrate while graphitic nitrogen dopants do not show any changes compared to the pristine form. Furthermore, we observed that the work function of graphene can be tuned effectively by changing the dopant configuration.

3.
Nature ; 539(7627): E1-E2, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27808195
4.
Nano Lett ; 15(5): 3067-72, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25826121

ABSTRACT

It is shown that charged defect generation, through argon ion-based plasma processing, in few layer graphene, could substantially enhance the electrical capacitance for electrochemical energy storage. Detailed consideration of the constituent space charge and quantum capacitances were used to delineate a new length scale, correlated to electrically active defects contributing to the capacitance, and was found to be smaller than a structural correlation length determined through Raman spectroscopy. The study offers insights into an industrially viable method (i.e., plasma processing) for modifying and enhancing the energy density of graphene-based electrochemical capacitors.

5.
Sci Rep ; 4: 5542, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-24986377

ABSTRACT

Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element using COMSOL) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f2/f1 was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers.

6.
J Phys Chem C Nanomater Interfaces ; 116(41): 22098-22103, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-23243478

ABSTRACT

The binding of proteins to a nanostructure often alters protein secondary and tertiary structures. However, the main physical mechanisms that elicit protein conformational changes in the presence of the nanostructure have not yet been fully established. Here we performed a comprehensive spectroscopic study to probe the interactions between bovine serum albumin (BSA) and carbon-based nanostructures of graphene and single-walled carbon nanotubes (SWNTs). Our results showed that the BSA "corona" acted as a weak acceptor to facilitate charge transfer from the carbon nanostructures. Notably, we observed that charge transfer occurred only in the case of SWNTs but not in graphene, resulting from the sharp and discrete electronic density of states of the former. Furthermore, the relaxation of external α-helices in BSA secondary structure increased concomitantly with the charge transfer. These results may help guide controlled nanostructure-biomolecular interactions and prove beneficial for developing novel drug delivery systems, biomedical devices and engineering of safe nanomaterials.

7.
Appl Phys Lett ; 101(26): 263701, 2012 Dec 24.
Article in English | MEDLINE | ID: mdl-23341687

ABSTRACT

Herein, we examined the dependence of protein adsorption on the nanoparticle surface in the presence of functional groups. Our UV-visible spectrophotometry, transmission electron microscopy, infrared spectroscopy, and dynamic light scattering measurements evidently suggested that the functional groups play an important role in the formation of nanoparticle-protein corona. We found that uncoated and surfactant-free silver nanoparticles derived from a laser ablation process promoted a maximum protein (bovine serum albumin) coating due to increased changes in entropy. On the other hand, bovine serum albumin displayed a relatively lower affinity for electrostatically stabilized nanoparticles due to the constrained entropy changes.

8.
Nano Lett ; 10(4): 1383-6, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20196539

ABSTRACT

An unexpected presence of ferromagnetic (FM) ordering in nanostructured nonmagnetic metal oxides has been reported previously. Though this property was attributed to the presence of defects, systematic experimental and theoretical studies to pinpoint its origin and mechanism are lacking. While it is widely believed that oxygen vacancies are responsible for FM ordering, surprisingly we find that annealing as-prepared samples at low temperature (high temperature) in flowing oxygen actually enhances (diminishes) the FM ordering. For these reasons, we have prepared, annealed in different environments, and measured the ensuing magnetization in micrometer and nanoscale ZnO with varying crystallinity. We further find from our magnetization measurements and ab initio calculations that a range of magnetic properties in ZnO can result, depending on the sample preparation and annealing conditions. For example, within the same ZnO sample we have observed ferro- to para- and diamagnetic responses depending on the annealing conditions. We also explored the effects of surface states on the magnetic behavior of nanoscale ZnO through detailed calculations.


Subject(s)
Magnetics , Nanostructures/chemistry , Zinc Oxide/chemistry , Nanotechnology/methods , Oxygen/chemistry , Particle Size , Quantum Theory , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...