Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Balkan J Med Genet ; 21(1): 77-81, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30425915

ABSTRACT

Hyperinsulinism-hyperammonemia syndrome (HI/HA) is the second most common form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI). The main clinical characteristics of HI/HA syndrome are repeated episodes of symptomatic hypoglycemia, but not usually severe. Consequently, children with HI/HA syndrome are frequently not recognized in the first months of life. An 8-month-old boy was admitted to a hospital due to hypoglycemia seizures. He also had asymptomatic hyperammonemia with no signs of lethargy or headaches. Genetic testing revealed autosomal dominant syndrome, a mutation in the GLUD1 gene (p.Arg274Cys). The boy started treatment with diazoxide. Subsequent growth and neurological development were normal. Hypoglycemic symptoms in HI/HA syndrome may vary from being non specific to severe. As hypoglycemia could lead to brain injury and impairment of neurological development, timely diagnosis and management are essential. If transient hypoglycemia is ruled out, metabolic disorders must be taken into account.

2.
Clin Exp Immunol ; 171(3): 263-72, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23379432

ABSTRACT

Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a recessive disorder resulting from mutations in the autoimmune regulator (AIRE). The patients' autoantibodies recognize not only multiple organ-specific targets, but also many type I interferons (IFNs) and most T helper type 17 (Th17) cell-associated cytokines, whose biological actions they neutralize in vitro. These anti-cytokine autoantibodies are highly disease-specific: otherwise, they have been found only in patients with thymomas, tumours of thymic epithelial cells that fail to express AIRE. Moreover, autoantibodies against Th17 cell-associated cytokines correlate with chronic mucocutaneous candidiasis in both syndromes. Here, we demonstrate that the immunoglobulin (Ig)Gs but not the IgAs in APECED sera are responsible for neutralizing IFN-ω, IFN-α2a, interleukin (IL)-17A and IL-22. Their dominant subclasses proved to be IgG1 and, surprisingly, IgG4 without IgE, possibly implicating regulatory T cell responses and/or epithelia in their initiation in these AIRE-deficiency states. The epitopes on IL-22 and IFN-α2a appeared mainly conformational. We also found mainly IgG1 neutralizing autoantibodies to IL-17A in aged AIRE-deficient BALB/c mice - the first report of any target shared by these human and murine AIRE-deficiency states. We conclude that autoimmunization against cytokines in AIRE deficiency is not simply a mere side effect of chronic mucosal Candida infection, but appears to be related more closely to disease initiation.


Subject(s)
Autoantibodies/immunology , Cytokines/immunology , Polyendocrinopathies, Autoimmune/immunology , Transcription Factors/deficiency , Animals , Autoantibodies/blood , Humans , Immunodominant Epitopes , Immunoglobulin G/blood , Interferon-alpha/immunology , Interleukin-17/immunology , Interleukins/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transcription Factors/physiology , AIRE Protein , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL
...