Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38894308

ABSTRACT

The integration of Internet of Things (IoT) technology into agriculture has revolutionized farming practices by using connected devices and sensors to optimize processes and facilitate sustainable execution. Because most IoT devices have limited resources, the vital requirement to efficiently manage data traffic while ensuring data security in agricultural IoT solutions creates several challenges. Therefore, it is important to study the data amount that IoT protocols generate for resource-constrained devices, as it has a direct impact on the device performance and overall usability of the IoT solution. In this paper, we present a comprehensive study that focuses on optimizing data transmission in agricultural IoT solutions with the use of compression algorithms and secure technologies. Through experimentation and analysis, we evaluate different approaches to minimize data traffic while protecting sensitive agricultural data. Our results highlight the effectiveness of compression algorithms, especially Huffman coding, in reducing data size and optimizing resource usage. In addition, the integration of encryption techniques, such as AES, provides the security of the transmitted data without incurring significant overhead. By assessing different communication scenarios, we identify the most efficient approach, a combination of Huffman encoding and AES encryption, to strike a balance between data security and transmission efficiency.

2.
Sensors (Basel) ; 23(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37112349

ABSTRACT

Edge computing is a viable approach to improve service delivery and performance parameters by extending the cloud with resources placed closer to a given service environment. Numerous research papers in the literature have already identified the key benefits of this architectural approach. However, most results are based on simulations performed in closed network environments. This paper aims to analyze the existing implementations of processing environments containing edge resources, taking into account the targeted quality of service (QoS) parameters and the utilized orchestration platforms. Based on this analysis, the most popular edge orchestration platforms are evaluated in terms of their workflow that allows the inclusion of remote devices in the processing environment and their ability to adapt the logic of the scheduling algorithms to improve the targeted QoS attributes. The experimental results compare the performance of the platforms and show the current state of their readiness for edge computing in real network and execution environments. These findings suggest that Kubernetes and its distributions have the potential to provide effective scheduling across the resources on the network's edge. However, some challenges still have to be addressed to completely adapt these tools for such a dynamic and distributed execution environment as edge computing implies.

3.
Sensors (Basel) ; 22(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35270981

ABSTRACT

Light clients for distributed ledger networks can verify blockchain integrity by downloading and analyzing blockchain headers. They are designed to circumvent the high resource requirements, i.e., the large bandwidth and memory requirements that full nodes must meet, which are unsuitable for consumer-grade hardware and resource-constrained devices. Light clients rely on full nodes and trust them implicitly. This leaves them vulnerable to various types of attacks, ranging from accepting maliciously forged data to Eclipse attacks. We introduce Aurora-Trinity, a novel version of light clients that addresses the above-mentioned vulnerability by relying on our original Aurora module, which extends the Ethereum Trinity client. The Aurora module efficiently discovers the presence of malicious or Byzantine nodes in distributed ledger networks with a predefined and acceptable error rate and identifies at least one honest node for persistent or ephemeral communication. The identified honest node is used to detect the latest canonical chain head or to infer the state of an entry in the ledger without downloading the header chain, making the Aurora-Trinity client extremely efficient. It can run on consumer-grade hardware and resource-constrained devices, as the Aurora module consumes about 0.31 MB of RAM and 1 MB of storage at runtime.


Subject(s)
Blockchain , Humans
4.
Sensors (Basel) ; 22(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35161626

ABSTRACT

Mobile crowdsensing (MCS) is a sensing paradigm that allows ordinary citizens to use mobile and wearable technologies and become active observers of their surroundings. MCS services generate a massive amount of data due to the vast number of devices engaging in MCS tasks, and the intrinsic mobility of users can quickly make information obsolete, requiring efficient data processing. Our previous work shows that the Bloom filter (BF) is a promising technique to reduce the quantity of redundant data in a hierarchical edge-based MCS ecosystem, allowing users engaging in MCS tasks to make autonomous informed decisions on whether or not to transmit data. This paper extends the proposed BF algorithm to accept multiple data readings of the same type at an exact location if the MCS task requires such functionality. In addition, we thoroughly evaluate the overall behavior of our approach by taking into account the overhead generated in communication between edge servers and end-user devices on a real-world dataset. Our results indicate that using the proposed algorithm makes it possible to significantly reduce the amount of transmitted data and achieve energy savings up to 62% compared to a baseline approach.


Subject(s)
Algorithms , Ecosystem , Communication
5.
Sensors (Basel) ; 19(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669576

ABSTRACT

Even though various commercial Smart City solutions are widely available on the market, we are still witnessing their rather limited adoption, where solutions are typically bound to specific verticals or remain in pilot stages. In this paper we argue that the lack of a Smart City regulatory framework is one of the major obstacles for a wider adoption of Smart City services in practice. Such framework should be accompanied by examples of good practice which stress the necessity of adopting interoperable Smart City services. Development and deployment of Smart City services can incur significant costs to cities, service providers and sensor manufacturers, and thus it is vital to adjust national legislation to ensure legal certainty to all stakeholders, and at the same time to protect interests of the citizens and the state. Additionally, due to a vast number of heterogeneous devices and Smart City services, both existing and future, their interoperability becomes vital for service replicability and massive deployment leading to digital transformation of future cities. The paper provides a classification of technical and regulatory characteristics of IoT services for Smart Cities which are mapped to corresponding roles in the IoT value chain. Four example use cases are chosen-Smart Parking, Smart Metering, Smart Street Lighting and Mobile Crowd Sensing-to showcase the legal implications relevant to each service. Based on the analysis, we propose a set of recommendations for each role in the value chain related to regulatory requirements of the aforementioned Smart City services. The analysis and recommendations serve as examples of good practice in hope that they will facilitate a wider adoption and longevity of IoT-based Smart City services.

SELECTION OF CITATIONS
SEARCH DETAIL
...