Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(3): 033301, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27036766

ABSTRACT

National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects in the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.

2.
Phys Rev Lett ; 111(3): 034803, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909332

ABSTRACT

Advanced light sources using relativistic electrons rely on coherent emission from high-density (compressed) beams. These beams, typically produced by photoinjected linear accelerators, can suffer from uncontrolled microbunching instabilities that are difficult to manage, since a complete understanding of their growth due to space charge and other wakefields is lacking. Here we present the first systematic measurements of microbunching instability using electron beams premodulated in a controlled fashion. By comparing beams having various modulation depths and wavelengths with unmodulated beams, we are able to benchmark, for the first time, the analytical calculations for the microbunching instability. In addition, our results give a proof of principle demonstration of a longitudinal space charge amplifier (LSCA), where a specific beam density pattern develops and grows. A potential application of this particular LSCA scheme is for controlling waveforms and enhancing the spectral content of linac-based sources of coherent terahertz radiation.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 2): 026404, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463334

ABSTRACT

We report the first experimental demonstration of a slippage-dominant free-electron laser (FEL) amplifier using a 140-fs full width at half maximum broadband seed laser pulse. The evolution of the longitudinal phase space of a laser seeded FEL amplifier in the slippage-dominant regime was experimentally characterized. We observed, for the first time, that the pulse duration of the FEL is primarily determined by the slippage between the seed laser and the electron beam. With a ± 1% variation in the electron-beam energy, we demonstrated reasonably good longitudinal coherence and a ± 2% spectral tuning range. The experimentally observed temporal and spectral evolution of the slippage-dominant FEL was verified by the numerical simulations.

4.
Phys Rev Lett ; 96(6): 064801, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16606000

ABSTRACT

The generation of brilliant, stable, and broadband coherent synchrotron radiation (CSR) in electron storage rings depends strongly on ring rf system properties such as frequency and gap voltage. We have observed intense coherent radiation at frequencies approaching the THz regime produced by the MIT-Bates South Hall Ring, which employs a high-frequency S-band rf system. The measured CSR spectral intensity enhancement with 2 mA stored current was up to 10,000 times above background for wave numbers near 3 cm(-1). The measurements also uncovered strong beam instabilities that must be suppressed if such a very high rf frequency electron storage ring is to become a viable coherent THz source.

SELECTION OF CITATIONS
SEARCH DETAIL
...