Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38753493

ABSTRACT

The development of a new heating system dedicated to in situ scanning electron microscope (SEM) experimentation at high temperatures is reported. This system, called FurnaSEM, is a compact microfurnace, enabling heat treatments up to 1300 °C. The choice of materials for the microfurnace is explained. The design of the microfurnace is optimized by iterations of numerical simulations, and the thermal characteristics of the microfurnace are calculated numerically. The numerical results obtained are compared with the thermal characteristics of a manufactured microfurnace, measured on a specially developed dedicated test bench. This test bench includes a working chamber simulating a SEM chamber equipped with a thermal camera. The results obtained during various qualification tests enabled us to determine the main technical characteristics of the FurnaSEM microfurnace: temperature profiles on the sample support surface, energy consumption at high temperatures, and the range of achievable thermal cycles.

2.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38753494

ABSTRACT

When conducting in situ experiments at high temperatures in a scanning electron microscope using microfurnaces, controlling the temperature of a sample of a few mm3 placed in the hot zone of the furnace can be a complex task. In most cases, the temperature of the sample is estimated by means of a thermocouple placed in the hot body of the furnace, and the assumption made is that the temperature of the furnace is the temperature of the sample. In this work, a detailed understanding of the thermal response of the sample placed in the hot zone of the furnace is proposed. Temperature differences due to contact resistance between the furnace surface and the sample, the nature of the sample, and the sample geometry are calculated with a numerical model and measured experimentally on a dedicated test bench. Three technical solutions (bonding, sandwiching, and mini-crucible) for limiting temperature differences between the furnace surface and sample are proposed and validated by numerical calculations and experimental measurements.

3.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38753495

ABSTRACT

The FurnaSEM microfurnace was installed in the chamber of a scanning electron microscope to carry out in situ experiments at high temperatures and test its limits. The microfurnace was used in combination with different types of detectors (Everhart-Thornley for the collection of secondary electrons in a high vacuum, gas secondary electron detector for the specific collection of secondary electrons in the presence of gas, and Karmen© detector for the collection of backscattered electrons at high temperature). Experiments carried out on various samples (metal alloys and ceramics) show that the microfurnace operates in both high-vacuum and low-vacuum modes. Temperature ramp rates during temperature cycles applied to the sample range from 1 to 120 °C/min (temperature rise) and 1 to 480 °C/min (controlled and natural cooling). The maximum temperature at which images were recorded up to 25 k × magnification was 1340 °C, with a residual air atmosphere of 120 Pa. The choice of a flat furnace with the sample placed directly above it has enabled innovative experiments to be carried out, such as low-voltage imaging (using a shorter working distance-up to 10 mm-than is possible with conventional furnaces), 3D imaging (by tilting the stage by up to 10°), and high-temperature backscattered electron imaging (using a dedicated detector).

4.
Small ; 18(18): e2106825, 2022 May.
Article in English | MEDLINE | ID: mdl-35253990

ABSTRACT

Sintering is a very important process in materials science and technological applications. Despite breakthroughs in achieving optimized piezoelectric properties, fundamentals of K0.5 Na0.5 NbO3 (KNN) sintering are not yet fully understood, facing densification versus grain growth competition. At present, microscale events during KNN sintering under reducing atmospheres are real-time monitored using a High Temperature-Environmental Scanning Electron Microscope. A two contacting KNN particles model satisfying the Kingery and Berg's bulk diffusion model is reported. Dynamic events like individual grain growth and grain elimination process are explored through a postanalysis of recorded image series. The diffusion coefficient for oxygen vacancies of 10-8 cm2 s-1 and average boundary mobility of 10-9 cm4 J-1 s-1 are reported for the KNN ceramics. Moreover, the local pore shrinkage is consistent with the Kingery and François's concept of pore stability except that pore curvatures are not all concave, convex or flat due to anisotropic grain-boundary energies. The global grain growth kinetics are described using parabolic and/or cubic laws. The effect of atmospheres and microstructure evolution on the intrinsic and extrinsic contributions to the dielectric response using Rayleigh's law is also explored. These results bring a new breath for KNN sintering studies in order to adapt the sintering process.

5.
Nano Lett ; 21(19): 8495-8502, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34596406

ABSTRACT

Understanding the kinetic selectivity of carbon nanotube growth at the scale of individual nanotubes is essential for the development of high chiral selectivity growth methods. Here we demonstrate that homodyne polarization microscopy can be used for high-throughput imaging of long individual carbon nanotubes under real growth conditions (at ambient pressure, on a substrate) and with subsecond time resolution. Our in situ observations on hundreds of individual nanotubes reveal that about half of them grow at a constant rate all along their lifetime while the other half exhibits stochastic changes in growth rates and/or switches between growth, pause, and shrinkage. Statistical analysis shows that the growth rate of a given nanotube essentially varies between two values, with a similar average ratio (∼1.7) regardless of whether the rate change is accompanied by a change in chirality. These switches indicate that the nanotube edge or the catalyst nanoparticle fluctuates between different configurations during growth.


Subject(s)
Nanotubes, Carbon , Catalysis , Kinetics , Microscopy, Polarization , Nanotechnology
6.
Sci Rep ; 10(1): 12168, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32699386

ABSTRACT

Most of the highly radioactive spent nuclear fuel (SNF) around the world is destined for final disposal in deep-mined geological repositories. At the end of the fuel's useful life in a reactor, about 96% of the SNF is still UO2. Thus, the behaviour of UO2 in SNF must be understood and evaluated under the weathering conditions of geologic disposal, which extend to periods of hundreds of thousands of years. There is ample evidence from nature that many uranium deposits have experienced conditions for which the formation of coffinite, USiO4, has been favoured over uraninite, UO2+x, during subsequent alteration events. Thus, coffinite is an important alteration product of the UO2 in SNF. Here, we present the first evidence of the formation of coffinite on the surface of UO2 at the time scale of laboratory experiments in a solution saturated with respect to amorphous silica at pH = 9, room temperature and under anoxic conditions.

7.
Inorg Chem ; 59(12): 8589-8602, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32484336

ABSTRACT

The thermal decomposition of actinide oxalates is greatly dependent on the oxidation state of the cation, the gas involved, and the physical characteristics of the precursor. In the actinides series, uranium(IV) oxalate U(C2O4)2·6H2O can be viewed as a peculiar case, as its sensibility toward oxidation leads to a specific series of reactions when heating under an oxygen atmosphere. In order to clarify the disagreements existing in the literature, particularly concerning potential carbonate intermediates and the possible transitory existence of UO3, we show here an extended characterization of the different intermediates through a combination of X-ray diffraction, vibrational spectroscopies and X-ray absorption near-edge spectroscopy. In this frame, uranium oxidation was found to occur at low temperature (200 °C) concomitantly to the onset of oxalate groups decomposition, leading to an amorphous oxo-oxalato compound. Pursuing the thermal conversion up to 350 °C led to complete oxidation of U(IV) into U(VI), then to the formation of amorphous UO3 still bearing adsorbed carbonates. The first pure oxide formed during the thermal conversion was further identified to substoichiometric UO3-δ after heating at 550 °C. Finally, U3O8 was obtained as the final stable phase after heating above 660 °C. The mechanism of thermal conversion of uranium(IV) oxalate into oxide under oxygen is then driven by a complex interplay between redox reactions and decomposition of the organic fractions. Such chemical reactions were also found to significantly modify the morphology of the powder through high-temperature environmental scanning electron microscopy observations: decomposition led to a 20% reduction in the size of the aggregates, while uranium oxidation clearly promoted growth within the agglomerates.

8.
Microsc Microanal ; 26(3): 397-402, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32241326

ABSTRACT

High-temperature scanning electron microscopy allows the direct study of the temperature behavior of materials. Using a newly developed heating stage, tilted images series were recorded at high temperature and 3D images of the sample surface were reconstructed. By combining 3D images recorded at different temperatures, the variations of material roughness can be accurately described and associated with local changes in the topography of the sample surface.

9.
Nanomaterials (Basel) ; 9(1)2018 Dec 23.
Article in English | MEDLINE | ID: mdl-30583592

ABSTRACT

Nanoparticles are defined as elementary particles with a size between 1 and 100 nm for at least 50% (in number). They can be made from natural materials, or manufactured. Due to their small sizes, novel toxicological issues are raised and thus determining the accurate size of these nanoparticles is a major challenge. In this study, we performed an intercomparison experiment with the goal to measure sizes of several nanoparticles, in a first step, calibrated beads and monodispersed SiO2 Ludox®, and, in a second step, nanoparticles (NPs) of toxicological interest, such as Silver NM-300 K and PVP-coated Ag NPs, Titanium dioxide A12, P25(Degussa), and E171(A), using commonly available laboratory techniques such as transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, dynamic light scattering, wet scanning transmission electron microscopy (and its dry state, STEM) and atomic force microscopy. With monomodal distributed NPs (polystyrene beads and SiO2 Ludox®), all tested techniques provide a global size value amplitude within 25% from each other, whereas on multimodal distributed NPs (Ag and TiO2) the inter-technique variation in size values reaches 300%. Our results highlight several pitfalls of NP size measurements such as operational aspects, which are unexpected consequences in the choice of experimental protocols. It reinforces the idea that averaging the NP size from different biophysical techniques (and experimental protocols) is more robust than focusing on repetitions of a single technique. Besides, when characterizing a heterogeneous NP in size, a size distribution is more informative than a simple average value. This work emphasizes the need for nanotoxicologists (and regulatory agencies) to test a large panel of different techniques before making a choice for the most appropriate technique(s)/protocol(s) to characterize a peculiar NP.

10.
Ultrason Sonochem ; 40(Pt A): 30-40, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28946429

ABSTRACT

This manuscript describes the original structuring of Mg materials under ultrasound irradiation in mild conditions. Golf ball like extended structures can be prepared in dilute oxalic solutions at 20°C under high frequency ultrasound (200kHz). An original approach carried out through iterative 3D reconstruction of sonicated surfaces is used to describe surface evolutions and characterize the formed microstructures. A combination of SEM, ICP-AES, contact-angle measurements, and 3D image analyses allows to characterize the roughness and mass loss evolutions, and investigate the mechanism of formation for such architectures. A screening of the sonication experiments clearly points out an ultrasound frequency dependency for the effects generated at the surface. 200kHz sonication in 0.01M oxalic acid provides an unprecedented manufacturing of Mg samples which result from a controlled and localized dissolution of the material and characterized by a strong wetting surface with a roughness of 170nm. The additional formation of newly formed secondary phases appearing with surface dissolution progress is also deciphered. More generally, the ultrasonic procedure used to prepare these engineered surfaces opens new alternatives for the nano- and micro-structuring of metallic materials which may exhibit advanced physical and chemical properties of potential interest for a large community.

11.
ACS Appl Mater Interfaces ; 8(6): 4208-15, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26808059

ABSTRACT

Glass thin films (with nanometer to micrometer thicknesses) are promising in numerous applications, both as passive coatings and as active components. Self-healing is a feature of many current technological developments as a means of increasing the lifetime of materials. In the context of these developments, we report on the elaboration of the first self-healing glassy thin-film coating developed specifically for high-temperature applications. This coating is obtained by pulsed laser deposition of alternating layers of vanadium boride (VB) and a multicomponent oxide glass. Self-healing is obtained through the oxidation of VB at the operating temperature. The investigation of the effect of elaboration parameters on the coating composition and morphology made it possible to obtain up to seven-layer coatings, with good homogeneity and perfect interfaces, and with a total thickness of less than 1 µm. The autonomic self-healing capacity of the coating has been demonstrated by an in situ experiment, which shows that a crack of nanometric dimension can be healed within a few minutes at 700 °C.

12.
Microsc Microanal ; 21(2): 307-12, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25898837

ABSTRACT

We have developed two integrated thermocouple (TC) crucible systems that allow precise measurement of sample temperature when using a furnace associated with an environmental scanning electron microscope (ESEM). Sample temperatures measured with these systems are precise (±5°C) and reliable. The TC crucible systems allow working with solids and liquids (silicate melts or ionic liquids), independent of the gas composition and pressure. These sample holder designs will allow end users to perform experiments at high temperature in the ESEM chamber with high precision control of the sample temperature.

13.
Phys Chem Chem Phys ; 15(38): 16160-6, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23986032

ABSTRACT

Self-assembly of neodymium nitrate and 2,5-dihydroxyl-1,4-benzoquinone (DHBQ) leads to the formation of a metal organic framework (MOF) of formula [Nd2(DHBQ)3(H2O)6]·18H2O. X-ray diffraction studies show that its crystalline structure is that of a two-dimensional coordination polymer packed in parallel sheets, with organised clusters of water molecules lying between the sheets and bridging them via a dense H-bond network. However, instead of forming faceted crystals, this MOF assembles into unusually shaped cylindrical particles of micrometre size. Scanning electron microscopy revealed that the particles are indeed mesoparticles from aggregated MOF crystalline nano-grains. The mesoparticles are stimuli-responsive and shrink in size upon exposure to reduced water vapour pressure. The shrinkage is isotropic and depends on temperature, which allows measuring the coexistence curve of water inside the particles and in the gas phase. Owing to an elaborated environmental scanning-electron microscopy (ESEM) study, it was possible to determine the association energy of water in the mesoparticles. We found a value of 16 ± 6.5 kJ mol(-1). Since the only water present in the particles is the lattice water in the nano-grains, this association energy is the lattice energy of water in the nano-sized MOF crystals. This value allowed us to draw a model for the building process of these originally shaped cylindrical mesoparticles. This is the first example of determination of a thermodynamic value by ESEM.


Subject(s)
Gases/chemistry , Metals/chemistry , Benzoquinones/chemistry , Microscopy, Electron, Scanning , Neodymium/chemistry , Pressure , Thermodynamics , Water/chemistry , X-Ray Diffraction
14.
Inorg Chem ; 51(6): 3478-89, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22401585

ABSTRACT

Ruthenium, a fission product arising from the reprocessing of spent uranium oxide (UOX) fuel, crystallizes in the form of acicular RuO(2) particles in high-level waste containment glass matrices. These particles are responsible for significant modifications in the physicochemical behavior of the glass in the liquid state, and their formation mechanisms are a subject of investigation. The chemical reactions responsible for the crystallization of RuO(2) particles with acicular or polyhedral shape in simplified radioactive waste containment glass are described. In situ high-temperature environmental scanning electron microscopy (ESEM) is used to follow changes in morphology and composition of the ruthenium compounds formed by reactions at high temperature between a simplified RuO(2)-NaNO(3) precursor and a sodium borosilicate glass (SiO(2)-B(2)O(3)-Na(2)O). The key parameter in the formation of acicular or polyhedral RuO(2) crystals is the chemistry of the ruthenium compound under oxidized conditions (Ru(IV), Ru(V)). The precipitation of needle-shaped RuO(2) crystals in the melt might be associated with the formation of an intermediate Ru compound (Na(3)Ru(V)O(4)) before dissolution in the melt, allowing Ru concentration gradients. The formation of polyhedral crystals is the result of the direct incorporation of RuO(2) crystals in the melt followed by an Ostwald ripening mechanism.

15.
Inorg Chem ; 50(18): 9059-72, 2011 Sep 19.
Article in English | MEDLINE | ID: mdl-21809825

ABSTRACT

To underline the potential links between the crystallization state and the microstructure of powdered cerium-neodymium oxides and their chemical durability, several Ce(IV)(1-x)Nd(III)(x)O(2-x/2) mixed dioxides were prepared in various operating conditions from oxalate precursors and then leached. The powdered samples were first examined through several physicochemical properties (crystallization state and associated crystallite size, reactive surface area, porosity...). The dependence of the normalized dissolution rates on various parameters (including temperature, nitric acid concentration, crystallization state) was examined for pure CeO(2) and Ce(1-x)Nd(x)O(2-x/2) solid solutions (with x = 0.09 and 0.16). For CeO(2), either the partial order related to the proton activity (n = 0.63) or the activation energy (E(A) = 37 kJ·mol(-1)) suggested that the dissolution was mainly driven by surface reactions occurring at the solid-liquid interface. The chemical durability of the cerium-neodymium oxides was also strongly affected by chemical composition. The initial normalized dissolution rates were also found to slightly depend on the crystallization state of the powders, suggesting the role played by the crystal defects in the dissolution mechanisms. On the contrary, the crystallite size had no important effect on the chemical durability. Finally, the normalized dissolution rates measured near the establishment of saturation conditions were less affected, which may be due to the formation of a gelatinous protective layer at the solid/liquid interface.

16.
Magn Reson Imaging ; 29(3): 443-55, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21129875

ABSTRACT

It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water.


Subject(s)
Algorithms , Magnetic Resonance Spectroscopy/methods , Sulfates/chemistry , Water/chemistry , Absorption , Diffusion , Materials Testing/methods
17.
J Electron Microsc (Tokyo) ; 59(5): 359-66, 2010.
Article in English | MEDLINE | ID: mdl-20452966

ABSTRACT

In situ high-temperature healing of cracks in composites made of glass and vanadium boride (VB) particles was observed using an environmental scanning electron microscope equipped with a high-temperature chamber (HT-ESEM). HT-ESEM is an adequate tool for studying the self-healing property of these materials. The change in crack length as a function of redox atmospheric conditions is reported. No self-healing behaviour was observed under reducing conditions, while a complete and rapid healing of the cracks was measured under oxidizing conditions. HT-ESEM image analyses enabled the monitoring of the healing effect. The self-healing mechanism was identified as a consequence of the VB active particles oxidation and subsequent pouring of fluid oxides into the cracks. These innovative composites offer an interesting potential in the domain of solid oxide fuel cell sealants.

18.
Inorg Chem ; 46(24): 10372-82, 2007 Nov 26.
Article in English | MEDLINE | ID: mdl-17963377

ABSTRACT

On the basis of optimized grinding/heating cycles developed for several phosphate-based ceramics, the preparation of brabantite and then monazite/brabantite solid solutions loaded with tetravalent thorium, uranium, and cerium (as a plutonium surrogate) was examined versus the heating temperature. The chemical reactions and transformations occurring when heating the initial mixtures of AnO2/CeO2, CaHPO(4).2H2O (or CaO), and NH4H2PO4 were identified through X-ray diffraction (XRD) and thermogravimetric/differential thermal analysis experiments. The incorporation of thorium, which presents only one stabilized oxidation state, occurs at 1100 degrees C. At this temperature, all the thorium-brabantite samples appear to be pure and single phase as suggested by XRD, electron probe microanalyses, and micro-Raman spectroscopy. By the same method, tetravalent uranium can be also stabilized in uranium-brabantite, i.e., Ca0.5U0.5PO4, after heating at 1200 degrees C. Both brabantites, Ca0.5Th0.5PO4 and Ca0.5U0.5PO4, begin to decompose when increasing the temperature to 1400 and 1300 degrees C, respectively, leading to a mixture of CaO and AnO2 by the volatilization of P4O10. In contrast to the cases of thorium and uranium, cerium(IV) is not stabilized during the heating treatment at high temperature. Indeed, the formation of Ca0.5Ce0.5PO4 appears impossible, due to the partial reduction of cerium(IV) into cerium(III) above 840 degrees C. Consequently, the systems always appear polyphase, with compositions of CeIII1-2xCeIVxCaxPO4 and Ca2P2O7. The same conclusion can be also given when discussing the incorporation of cerium(IV) into La1-2xCeIIIx-yCeIVyCay(PO4)1-x+y. This incomplete incorporation of cerium(IV) confirms the results obtained when trying to stabilize tetravalent plutonium in Ca0.5PuIV0.5PO4 samples.

19.
Environ Pollut ; 124(1): 139-49, 2003.
Article in English | MEDLINE | ID: mdl-12683990

ABSTRACT

Apatite appears a useful compound for removing lead from water, due to its ability to immobilize the metal by precipitation. In dilute solution, dissolved hydroxyapatite [HA, Ca1O(P04)6(OH)2] provided phosphates that were reactive with aqueous lead (molar ratio HA/Pb= 1/10) forming precipitates at around pH 6. These dissolved at a more acidic pH (3). Solid HA in contact with Pb2+ions, led to the formation of pyromorphite [Pblo(P04)6(OH)2], identified by X-ray diffraction and insoluble at pH tested (3-8). The amount of pyromorphite increased with the weight ratio of HA/Pb. When this one increased from 1 to 1000, lead precipitated as pyromorphite rose from 19 to 99%. In vivo experiments on rats confirmed the in vitro results. In fact, lead bioavailability assessed by intestinal perfusion was unchanged in the presence of dissolved HA, whereas it was significantly lower in the presence of solid HA, evaluated by gastric intubation, at a weight ratio equal to 10 (amount of lead absorbed decreased by 60%). Apatite could bean effective means of immobilizing lead in drinking or sewage, since accidental pyromorphite ingestion does not yield bioavailable lead.


Subject(s)
Hydroxyapatites/chemistry , Lead/chemistry , Water Pollutants, Chemical , Water Purification/methods , Animals , Biological Availability , Chemical Precipitation , Male , Microscopy, Electron, Scanning , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...