Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 92(24): 15997-16004, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33259187

ABSTRACT

We present a new electrochemical system that combines paper-based sensing and ion-transfer voltammetry, bringing the latter a step closer toward point-of-care applications. Studies at the interface between two immiscible electrolyte solutions (ITIES) are often performed to detect redox-inactive species; unfortunately, due to the inherent instability of the interface, it is rather poorly explored outside specialized laboratories. Here, we address this limitation by combining a pen-like device containing the gelled organic phase with a paper-supported aqueous phase. This combination makes the system more user-friendly, potentially low-cost, and easy to assemble. We show the applicability of the new cell to analyze both simple and ionophore-facilitated transfer of ions and proteins, preconcentration of species, and analysis of mixtures through combination with paper chromatography. The native ion content of the paper also enabled measurements without added electrolytes. Those studies could broaden the scope for the application of the label-free electrochemical detection of nonredox-active species at points-of-need.

2.
Anal Chem ; 90(15): 8727-8731, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30016079

ABSTRACT

While ion transfer studies were shown to be a promising method for fundamental electrochemistry, pharmacokinetic studies, and sensing, they suffer from inherent instability of the interface formed between the organic and aqueous phases. This limits to some extent the range of solvents which can be used and confines these studies to the laboratory. We propose here the use of paper, which has revolutionized the way we think of miniaturized analytical devices during the past decade, as a perfect substrate for ion transfer studies across the liquid-liquid interface. We describe the design of a simple three-phase electrode paper-based setup for redox-driven transfer of anions from an aqueous to an organic phase. Electrochemical measurements of seven different anions and concentration dependence studies are in good agreement with the results obtained with traditional setups. Additionally, we show the applicability and limitations of such setups to the analysis of anion mixtures.

3.
Biosensors (Basel) ; 8(1)2017 Dec 31.
Article in English | MEDLINE | ID: mdl-29301230

ABSTRACT

Electronic tongue systems are traditionally used to analyse: food products, water samples and taste masking technologies for pharmaceuticals. In principle, their applications are almost limitless, as they are able to almost completely reduce the impact of interferents and can be applied to distinguish samples of extreme complexity as for example broths from different stages of fermentation. Nevertheless, their applications outside the three principal sample types are, in comparison, rather scarce. In this review, we would like to take a closer look on what are real capabilities of electronic tongue systems, what can be achieved using mixed sensor arrays and by introduction of biosensors or molecularly imprinted polymers in the matrix. We will discuss future directions both in the sense of applications as well as system development in the ever-growing trend of low cost analysis.


Subject(s)
Electronic Nose , Taste , Humans
4.
Anal Bioanal Chem ; 409(6): 1555-1567, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28004171

ABSTRACT

We show that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast, reliable, and easy method for detection and identification of food-borne bacteria, namely Salmonella spp., Listeria monocytogenes, and Cronobacter spp., in different types of food matrices (salmon, eggs, powdered infant formula milk, mixed herbs, respectively). The main aim of this work was to introduce the SERS technique into three ISO (6579:2002; 11290-1:1996/A1:2004; 22964:2006) standard procedures required for detection of these bacteria in food. Our study demonstrates that the SERS technique is effective in distinguishing very closely related bacteria within a genus grown on solid and liquid media. The advantages of the proposed ISO-SERS method for bacteria identification include simplicity and reduced time of analysis, from almost 144 h required by standard methods to 48 h for the SERS-based approach. Additionally, PCA allows one to perform statistical classification of studied bacteria and to identify the spectrum of an unknown sample. Calculated first and second principal components (PC-1, PC-2) account for 96, 98, and 90% of total variance in the spectra and enable one to identify the Salmonella spp., L. monocytogenes, and Cronobacter spp., respectively. Moreover, the presented study demonstrates the excellent possibility for simultaneous detection of analyzed food-borne bacteria in one sample test (98% of PC-1 and PC-2) with a goal of splitting the data set into three separated clusters corresponding to the three studied bacteria species. The studies described in this paper suggest that SERS represents an alternative to standard microorganism diagnostic procedures. Graphical Abstract New approach of the SERS strategy for detection and identification of food-borne bacteria, namely S. enterica, L. monocytogenes, and C. sakazakii in selected food matrices.


Subject(s)
Cronobacter/isolation & purification , Food Analysis/methods , Food Microbiology , Listeria monocytogenes/isolation & purification , Salmonella/isolation & purification , Spectrum Analysis, Raman/methods , Animals , Eggs/microbiology , Food Analysis/standards , Food Industry , Food Microbiology/standards , Humans , Infant Formula/microbiology , Infant, Newborn , Listeriosis/microbiology , Reproducibility of Results , Salmon/microbiology , Salmonella Infections/microbiology , Spectrum Analysis, Raman/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...