Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
AAPS PharmSciTech ; 19(8): 3440-3453, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30280359

ABSTRACT

Film coating thickness of minitablets was estimated in-line during coating in a fluid-bed equipment by means of visual imaging. An existing, commercially available image acquisition system was used for image acquisition, while dedicated image analysis and data analysis methods were developed for this purpose. The methods were first tested against simulated minitablet's images and after that examined on a laboratory-scale fluid-bed Wurster coating process. An observation window cleaning mechanism was developed for this purpose. Six batches of minitablets were coated in total, using two different dispersions, where for the second dispersion coating endpoint was determined based on the in-line measurement. Coating thickness estimates were calculated from the increasing size distributions of the minitablet's major and minor lengths, assessed from the acquired images. Information on both the minitablet's average band and average cap coating thicknesses was obtained. The in-line coating thickness estimates were compared to the coating thickness weight gain calculations and the optical microscope measurements as a reference method. Average band coating thickness estimate was found the most accurate in comparison to microscope measurements, with root mean square error of 1.30 µm. The window cleaning mechanism was crucial for the accuracy of the in-line measurements as was evident from the corresponding decrease of the root mean square error (9.52 µm, band coating thickness). The presented visual imaging approach exhibits accuracy of at least 2 µm and is not susceptible to coating formulation or color variations. It presents a promising alternative to other existing techniques for the in-line coating thickness estimation.


Subject(s)
Tablets , Technology, Pharmaceutical
2.
Int J Pharm ; 546(1-2): 78-85, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-29752979

ABSTRACT

Agglomeration of pellets in fluidized bed coating processes is an undesirable phenomenon that affects the yield and quality of the product. In scope of PAT guidance, we present a system that utilizes visual imaging for in-line monitoring of the agglomeration degree. Seven pilot-scale Wurster coating processes were executed under various process conditions, providing a wide spectrum of process outcomes. Images of pellets were acquired during the coating processes in a contactless manner through an observation window of the coating apparatus. Efficient image analysis methods were developed for automatic recognition of discrete pellets and agglomerates in the acquired images. In-line obtained agglomeration degree trends revealed the agglomeration dynamics in distinct phases of the coating processes. We compared the in-line estimated agglomeration degree in the end point of each process to the results obtained by the off-line sieve analysis reference method. A strong positive correlation was obtained (coefficient of determination R2=0.99), confirming the feasibility of the approach. The in-line estimated agglomeration degree enables early detection of agglomeration and provides means for timely interventions to retain it in an acceptable range.


Subject(s)
Dosage Forms , Image Processing, Computer-Assisted , Hypromellose Derivatives/chemistry , Plasticizers/chemistry , Polyethylene Glycols/chemistry , Riboflavin/chemistry , Sugars/chemistry , Technology, Pharmaceutical
SELECTION OF CITATIONS
SEARCH DETAIL
...