Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Labelled Comp Radiopharm ; 66(11): 362-368, 2023 09.
Article in English | MEDLINE | ID: mdl-37530220

ABSTRACT

Halogenated, labeled with deuterium, tritium or doubly labeled with deuterium and tritium in the 3S position of the side chain isotopomers of L-phenylalanine and phenylpyruvic acid were synthesized. Isotopomers of halogenated L-phenylalanine were obtained by addition of ammonia from isotopically enriched buffer solution to the halogenated derivative of (E)-cinnamic acid catalyzed by phenylalanine ammonia lyase. Isotopomers of halogenated phenylpyruvic acid were obtained enzymatically by conversion of the appropriate isotopomer of halogenated L-phenylalanine in the presence of phenylalanine dehydrogenase. As a source of deuterium was used deuterated water, as a source of tritium was used a solution of highly diluted tritiated water. The labeling takes place in good yields and with high deuterium atom% abundance.


Subject(s)
Halogens , Phenylalanine , Phenylpyruvic Acids , Deuterium/chemistry , Halogens/chemical synthesis , Halogens/chemistry , Hydrogen , Tritium/chemistry , Phenylpyruvic Acids/chemical synthesis , Phenylpyruvic Acids/chemistry
2.
Arch Pharm (Weinheim) ; 356(9): e2300105, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37401845

ABSTRACT

New halogenated thiourea derivatives were synthesized via the reaction of substituted phenylisothiocyanates with aromatic amines. Their cytotoxic activity was examined in in vitro studies against solid tumors (SW480, SW620, PC3), a hematological malignance (K-562), and normal keratinocytes (HaCaT). Most of the compounds were more effective against SW480 (1a, 3a, 3b, 5j), K-562 (2b, 3a, 4a), or PC3 (5d) cells than cisplatin, with favorable selectivity. Their anticancer mechanisms were studied by Annexin V-fluorescein-5-isothiocyanate apoptosis, caspase-3/caspase-7 assessment, cell cycle analysis, interleukin-6 (IL-6) release inhibition, and reactive oxygen species (ROS) generation assay. Thioureas 1a, 2b, 3a, and 4a were the most potent activators of early apoptosis in K-562 cells, and substances 1a, 3b, 5j triggered late-apoptosis or necrosis in SW480 cells. This proapoptotic effect was proved by the significant increase of caspase-3/caspase-7 activation. Cell cycle analysis revealed that derivatives 1a, 3a, 5j increased the number of SW480 and K-562 cells in the sub-G1 and/or G0/G1 phases, and one evoked cycle arrest at the G2 phase. The most potent thioureas inhibited IL-6 cytokine secretion from PC3 cells and both colon cancer cell lines. Apoptosis-inducing compounds also increased ROS production in all tumor cell cultures, which may enhance their anticancer properties.


Subject(s)
Antineoplastic Agents , Neoplasms , Caspase 3/metabolism , Caspase 7/metabolism , Structure-Activity Relationship , Phenylthiourea/pharmacology , Reactive Oxygen Species/metabolism , Interleukin-6/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation
3.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34832881

ABSTRACT

Substituted thiourea derivatives possess confirmed cytotoxic activity towards cancer but also normal cells. To develop new selective antitumor agents, a series of 3-(trifluoromethyl)phenylthiourea analogs were synthesized, and their cytotoxicity was evaluated in vitro against the cell line panel. Compounds 1-5, 8, and 9 were highly cytotoxic against human colon (SW480, SW620) and prostate (PC3) cancer cells, and leukemia K-562 cell lines (IC50 ≤ 10 µM), with favorable selectivity over normal HaCaT cells. The derivatives exerted better growth inhibitory profiles towards selected tumor cells than the reference cisplatin. Compounds incorporating 3,4-dichloro- (2) and 4-CF3-phenyl (8) substituents displayed the highest activity (IC50 from 1.5 to 8.9 µM). The mechanisms of cytotoxic action of the most effective thioureas 1-3, 8, and 9 were studied, including the trypan blue exclusion test of cell viability, interleukin-6, and apoptosis assessments. Compounds reduced all cancerous cell numbers (especially SW480 and SW620) by 20-93%. Derivatives 2 and 8 diminished the viability of SW620 cells by 45-58%. Thioureas 1, 2, and 8 exerted strong pro-apoptotic activity. Compound 2 induced late apoptosis in both colon cancer cell lines (95-99%) and in K-562 cells (73%). All derivatives acted as inhibitors of IL-6 levels in both SW480 and SW620 cells, decreasing its secretion by 23-63%.

4.
J Labelled Comp Radiopharm ; 59(14): 627-634, 2016 12.
Article in English | MEDLINE | ID: mdl-27307311

ABSTRACT

Aromatic amino acids such as l-phenylalanine, l-tryptophan, 3',4'-dihydroxy-l-phenylalanine (l-DOPA), and their derivatives 3',4'-dihydroxyphenylacelaldehyde (DOPAL) and 3',4'-dihydroxyphenylethanol (DOPET), play an essential role in human metabolic processes. Incorrect or slow biotransformation of these compounds leads to some metabolic dysfunctions and in some cases to some neurodegenerative diseases. Therefore, studies of the biotransformation mechanisms of these metabolites draw biochemists' and medical researchers' attention. This study investigates the mechanisms of biotransformation of the aforementioned compounds using kinetic (KIE) and solvent (SIE) isotope effect methods. The overview presents the results and the numerical values of KIE and SIE methods, obtained in the study of biotransformation of l-phenylalanine, 5'-chloro-l-tryptophan, and l-DOPA, catalyzed by the enzymes from the lyases group (phenylalanine ammonia lyase, tryptophan indole-lyase, and tyrosine decarboxylase). Deuterium KIE was also determined during the deamination of 2'-chloro-l-phenylalanine in the presence of the enzyme l-phenylalanine dehydrogenase, as well as in the conversion of DOPAL into DOPET catalyzed by the enzyme alcohol dehydrogenase. The values of KIE and SIE have been determined using a noncompetitive spectrophotometric and a competitive (combined with internal radioactivity standard) radiometric methods.


Subject(s)
Amino Acids, Aromatic/chemistry , Amino Acids, Aromatic/metabolism , Solvents/chemistry , Animals , Biotransformation , Isotopes/chemistry , Kinetics , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...