Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37959723

ABSTRACT

Two approaches to the synthesis of para-menthene epoxide ((1S,5S,6R)-4) are developed. The first approach includes a reaction between chlorohydrin 7 and NaH in THF. The second involves the formation of epoxide in the reaction of corresponding diacetate 6 with sodium tert-butoxide. One possible mechanism of this reaction is proposed to explain unexpected outcomes in the regio- and stereospecificity of epoxide (1S,5S,6R)-4 formation. The epoxide ring in (1S,5S,6R)-4 is then opened by various S- and O-nucleophiles. This series of reactions allows for the stereoselective synthesis of diverse derivatives of the monoterpenoid Prottremine 1, a compound known for its antiparkinsonian activity, including promising antiparkinsonian properties.

2.
Molecules ; 27(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500381

ABSTRACT

Parkinson's disease (PD) is the most common age-related movement disorder characterized by the progressive loss of nigrostriatal dopaminergic neurons. To date, PD treatment strategies are mostly based on dopamine replacement medicines, which can alleviate motor symptoms but do not slow down the progression of neurodegeneration. Thus, there is a need for disease-modifying PD therapies. The aim of this work was to evaluate the neuroprotective effects of the novel compound PA96 on dopamine neurons in vivo and in vitro, assess its ability to alleviate motor deficits in MPTP- and haloperidol-based PD models, as well as PK profile and BBB penetration. PA96 was synthesized from (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl) cyclohex-3-ene-1,2-diol (Prottremin) using the original three-step stereoselective procedure. We found that PA96: (1) supported the survival of cultured näive dopamine neurons; (2) supported the survival of MPP+-challenged dopamine neurons in vitro and in vivo; (3) had chemically appropriate properties (synthesis, solubility, etc.); (4) alleviated motor deficits in MPTP- and haloperidol-based models of PD; (5) penetrated the blood-brain barrier in vivo; and (6) was eliminated from the bloodstream relative rapidly. In conclusion, the present article demonstrates the identification of PA96 as a lead compound for the future development of this compound into a clinically used drug.


Subject(s)
MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , Animals , Mice , Humans , Dopaminergic Neurons , MPTP Poisoning/drug therapy , Monoterpenes/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Haloperidol/pharmacology , Substantia Nigra
SELECTION OF CITATIONS
SEARCH DETAIL
...