Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
MethodsX ; 9: 101768, 2022.
Article in English | MEDLINE | ID: mdl-35800983

ABSTRACT

Very often a manufacturing process is followed by some surface treatment. Such a process induces residual stress into the manufactured component. Compressive residual stress is desirable for enhancing the fatigue properties of the component. The residual stress is often measured only at the surface, if at all. However, residual stress is equilibrating in the whole component. Therefore, compressive residual stress at the surface induces undesirable tensile stress inside in the component. Knowledge of the residual stress distribution in a body can be very useful in engineering applications. The authors found this knowledge necessary for a proper description of fatigue crack propagation in railway axles described in the original paper [1]. With the onset of modern surface treating technologies, e.g. induction hardening, which can affect the entire cross-section of the component, the residual stress determination is even more critical. The presented paper aims to describe a procedure developed for proper residual stress determination. The procedure can be easily used e.g. in R&D centers, where X-ray diffraction residual stress measurement is already in use. The procedure is suitable for the residual stress determination in sizable cylindrical bodies or components, e.g. railway axles. It uses X-ray diffraction residual stress surface measurement and layer removal by machining. Results experimentally obtained are corrected by a general procedure developed in MATLAB software in order to obtain the original residual stress state in the cylindrical body.•More accurate procedure for a residual stress determination in cylindrical bodies.

2.
Materials (Basel) ; 15(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683046

ABSTRACT

The fatigue behavior of a filled non-crystallizing elastomer was investigated on axisymmetric dumbbell specimens. By plotting relevant Wöhler curves, a power law behavior was found. In addition, temperature increases due to heat build-up were monitored. In order to distinguish between initiation and crack growth regimes, hysteresis curves, secant and dynamic moduli, dissipated and stored energies, and normalized minimum and maximum forces were analyzed. Even though indications related to material damaging were observed, a clear trend to recognize the initiation was not evident. Further details were revealed by considering a fracture mechanics. The analysis of the fracture surfaces evidenced the presence of three regions, associated to initiation, fatigue striation, and catastrophic failure. Additional fatigue tests were performed with samples in which a radial notch was introduced. This resulted in a reduction in lifetime by four orders of magnitude; nevertheless, the fracture surfaces revealed similar failure mechanisms. A fracture mechanics approach, which considered the effect of temperature, was adopted to calculate the critical defect size for fatigue, which was found to be approximately 9 µm. This value was then compared with the particle size distribution obtained through X-ray microcomputed tomography (µ-CT) of undamaged samples and it was found that the majority of the initial defects were indeed smaller than the calculated one. Finally, the evaluation of J-integral for both unnotched and notched dumbbells enabled the assessment of a geometry-independent correlation with fatigue life.

3.
Materials (Basel) ; 14(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069380

ABSTRACT

The problem of crack propagation from internal defects in thermoplastic cylindrical bearing elements is addressed in this paper. The crack propagation in these elements takes place under mixed-mode conditions-i.e., all three possible loading modes (tensile opening mode I and shear opening modes II and III) of the crack are combined together. Moreover, their mutual relation changes during the rotation of the element. The dependency of the stress intensity factors on the crack length was described by general parametric equations. The model was then modified by adding a void to simulate the presence of a manufacturing defect. It was found that the influence of the void on the stress intensity factor values is quite high, but it fades with crack propagating further from the void. The effect of the friction between the crack faces was find negligible on stress intensity factor values. The results presented in this paper can be directly used for the calculation of bearing elements lifetime without complicated finite element simulations.

SELECTION OF CITATIONS
SEARCH DETAIL