Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 11(21): 3724-3727, 2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30175551

ABSTRACT

Single-atom catalysts with ionic Pd active sites supported on nitrogen-doped carbon nanotubes have been synthesized with a palladium content of 0.2-0.5 wt %. The Pd sites exhibited unexpectedly high stability up to 500 °C in a hydrogen atmosphere which was explained by coordination of the Pd ions by nitrogen-containing fragments of graphene layers. The active sites showed a high rate of gas-phase formic acid decomposition yielding hydrogen. An increase in Pd content was accompanied by the formation of metallic nanoparticles with a size of 1.2-1.4 nm and by a decrease in the catalytic activity. The high stability of the single-atom Pd sites opens possibilities for using such catalysts in high-temperature reactions.

2.
ChemSusChem ; 10(4): 720-730, 2017 02 22.
Article in English | MEDLINE | ID: mdl-27996206

ABSTRACT

Formic acid derived from biomass is known to be used for hydrogen production over Pd catalysts. The effects of preparation variables, structure of the carbon support, surface functional composition on the state of Pd, and catalytic properties of the samples in the vapor-phase decomposition of formic acid were studied. In all catalysts derived from Pd acetate, metal particles visible by conventional TEM had similar sizes, but the adsorption capacity towards CO responded strongly to N-doping of the carbon surface. Moreover, a decrease in the CO/Pd values was accompanied by a significant increase in the reaction rate. Taking account of X-ray photoelectron spectroscopy (XPS) and atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF/STEM) data, the trends observed were assigned to a larger fraction of single electron-deficient Pd atoms in the N-doped samples, which do not adsorb CO but interact with formic acid to produce hydrogen. This was confirmed by extended DFT studies. The obtained results are valuable for the development of Pd catalysts on carbon supports for different processes.


Subject(s)
Carbon/chemistry , Formates/chemistry , Green Chemistry Technology/methods , Hydrogen/chemistry , Palladium/chemistry , Adsorption , Biomass , Carbon Monoxide , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...