Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 56(15): 4145-4149, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28294469

ABSTRACT

Robust nanostructures were obtained from polymers that otherwise do not assemble by using a novel approach based on electrostatic self-assembly. The essence of this strategy involves the use of divalent counterions to temporarily perturb the packing features of the ionic groups in a homopolymer, which results in a vesicle-like structure that is captured in situ through a simple crosslinking reaction. The fidelity of the assembly has been tested for molecular transport across the nanomembrane, both for the molecules encapsulated in the lumen and for those trapped in the membrane itself. The membranes are addressable for robust multifunctionalization of their surfaces and for tunable transmembrane molecular transport.


Subject(s)
Nanostructures/chemistry , Polymers/chemical synthesis , Static Electricity , Particle Size , Polymers/chemistry , Surface Properties
2.
J Phys Chem A ; 120(44): 8794-8803, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27802038

ABSTRACT

A complete photophysical characterization of organic molecules designed for use as molecular materials is critical in the design and construction of devices such as organic photovoltaics (OPV). The nature of a molecule's excited state will be altered in molecules employing the same chromophoric units but possessing different molecular architectures. For this reason, we examine the photophysical reactions of two BODIPY-based D-A and A-D-A molecules, where D is the donor and A is the acceptor. A BODIPY (4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene) moiety serves as the A component and is connected through the meso position using a 3-hexylthiophene linker to a N-(2-ethylhexyl)dithieno[3,2-b:2',3'-d]pyrrole (DTP), which serves as the D component. An A-D-A motif is compared to its corresponding D-A dyad counterpart. We show a potential advantage to the A-D-A motif over the D-A motif in creating longer-lived excited states. Transient absorption (TA) spectroscopy is used to characterize the photophysical evolution of each molecule's excited state. Global analysis of TA data using singular value decomposition and target analysis is performed to identify decay-associated difference spectra (DADS). The DADS reveal the spectral features associated with charge-transfer excited states that evolve with different dynamics. A-D-A possess slightly longer excited-state lifetimes, 42 ps nonradiative decay, and 4.64 ns radiative decay compared to those of D-A, 24 ps nonradiative decay, and 3.95 ns radiative decay. A longer lived A-D-A component is observed with microsecond lifetimes, representing a small fraction of the total photophyscial product. Steady-state and time-resolved photoluminescence augment the insights from TA, while electrochemistry and spectroelectrochemistry are employed to identify the nature of the excited state. Density functional theory supports the observed electronic and electrochemical properties of the D-A and A-D-A molecules. These results form a complete picture of the electronic and photophysical properties of D-A and A-D-A and provide contextualization for structure-function relationships between molecules and OPV devices.

3.
Langmuir ; 31(35): 9707-17, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26305151

ABSTRACT

The encapsulation efficiency of high-Tg polynorbornene micelles was probed with a hydrophobic dye 2,6-diiodoboron-dipyrromethene (BODIPY). Changes in the visible absorption spectra of aggregated versus monomeric dye molecules provided a probe for assessing encapsulation. Polynorbornene micelles are found to be capable of loading up to one BODIPY dye per ten polymers. As the hydrophilic block size increased in the polymeric amphiphiles, more of the dye was incorporated within the micelles. This result is consistent with the dye associating with the polymer backbone in the shell of the micelles. The encapsulation rate varied significantly with temperature, and a slight dependence on micellar morphology was also noted. Additionally, we report a 740 µs triplet lifetime for the encapsulated BODIPY dye. The lifetime is the longest ever recorded for a BODIPY triplet excited state at room temperature and is attributed to hindered triplet-triplet annihilation in the high-viscosity micellar shell.

4.
Chemistry ; 21(21): 7721-5, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25846826

ABSTRACT

A series of ketocyanine derivatives possessing bis(diarylamino)fluorenyl donors and variable acceptors installed at the bridging carbon atom were synthesized to investigate how the electronic structure of the dye can be systemically tuned through stabilization of the cyanine-like character of the donor by increasing the acceptor strength. Analysis of the (1) H NMR spectra indicates that the "charge-separated" species dominates in these dyes, given that carbons possessing a positive or negative charge in the resonance structures of this state purposefully shift downfield or upfield, respectively, depending on the strength of the acceptor moiety. In DAA-Fl-PI, the acceptor strength and the gain of acceptor aromaticity indicates a predisposition of the separated state, indicated by asymmetry in the (1) H NMR spectrum, as well as uneven distribution of the HOMO on the fluorenyl donor.

5.
ACS Appl Mater Interfaces ; 6(13): 9920-4, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24945883

ABSTRACT

Polymer solar cells fabricated in air under ambient conditions are of significant current interest, because of the implications in practicality of such devices. However, only moderate performance has been obtained for the air-processed devices. Here, we report that enhanced short circuit current density (JSC) and open circuit voltage (VOC) in air-processed poly(3-hexylthiophene) (P3HT)-based solar cells can be obtained by using a series of donor-acceptor dyes as the third component in the device. Power conversion efficiencies up to 4.6% were obtained upon addition of the dyes which are comparable to high-performance P3HT solar cells fabricated in controlled environments. Multilayer planar solar cells containing interlayers of the donor-acceptor dyes, revealed that along with infrared sensitization, an energy level cascade architecture and Förster resonance energy transfer could contribute to the enhanced performance.

6.
Org Biomol Chem ; 12(15): 2474-8, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24604281

ABSTRACT

Cyclopentadithiophene (CPDT) derivatives with different heteroatom conformations have been synthesized. The optical, electrochemical and charge transport properties of these molecules are reported. The CPDT-anti-ketone not only exhibits the lowest optical and electronic bandgaps, but also exhibits reasonable hole mobility, 3 × 10(-3) cm(2) (V s)(-1). Changing the carbonyl conformation to the syn position or incorporating the imine functionality results in a blue-shift in the lower energy band of the absorption spectrum indicative of the increased bandgaps.

7.
Chem Commun (Camb) ; 50(22): 2913-5, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24492524

ABSTRACT

A series of acceptor-donor-acceptor molecules containing terminal BODIPY moieties conjugated through the meso position were synthesized. Deep LUMO energy levels and good visible absorption led to their use as acceptors in bulk heterojunction solar cells. Inverted devices were fabricated, reaching efficiencies as high as 1.51%.

8.
Phys Chem Chem Phys ; 14(12): 4043-57, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22331104

ABSTRACT

Research in the field of organic photovoltaics has gained considerable momentum in the last two decades owing to the need for developing low-cost and efficient energy harvesting systems. Elegant molecular architectures have been designed, synthesized and employed as active materials for photovoltaic devices thereby leading to a better molecular structure-device property relationship understanding. In this perspective, we outline new macromolecular scaffolds that have been designed within the purview of each of the three fundamental processes involving light harvesting, charge separation and charge transport.


Subject(s)
Electric Power Supplies , Macromolecular Substances/chemistry , Organic Chemicals/chemistry , Solar Energy , Macromolecular Substances/chemical synthesis , Molecular Structure
9.
Nat Chem ; 2(6): 503-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20489721

ABSTRACT

Transporting protons is essential in several biological processes as well as in renewable energy devices, such as fuel cells. Although biological systems exhibit precise supramolecular organization of chemical functionalities on the nanoscale to effect highly efficient proton conduction, to achieve similar organization in artificial systems remains a daunting challenge. Here, we are concerned with transporting protons on a micron scale under anhydrous conditions, that is proton transfer unassisted by any solvent, especially water. We report that proton-conducting systems derived from facially amphiphilic polymers that exhibit organized supramolecular assemblies show a dramatic enhancement in anhydrous conductivity relative to analogous materials that lack the capacity for self-organization. We describe the design, synthesis and characterization of these macromolecules, and suggest that nanoscale organization of proton-conducting functionalities is a key consideration in obtaining efficient anhydrous proton transport.


Subject(s)
Macromolecular Substances/chemistry , Nanostructures , Polymers/chemistry , Protons , Water/chemistry , Membranes, Artificial , Models, Chemical , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...