Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 29(6): 1847-1855, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37850643

ABSTRACT

The properties of centimeter-sized thin-film compound semiconductors depend upon the morphology and chemical composition of the multiple submicrometer-thick elemental and alloy precursor layers from which they are synthesized. The challenge is to characterize the individual precursor layers over these length scales during a multistep synthesis without altering or contaminating them. Conventional electron and X-ray-based morphological and compositional techniques are invasive, require preparation, and are thus incompatible with in-line synthesis processes. In a proof-of-concept study, we applied confocal laser scanning microscopy (CLSM) as a noninvasive optical imaging technique, which measures three-dimensional surface profiles with nanoscale resolution, to this challenge. Using an array of microdots containing Cu(In,Ga)Se2 semiconductor layers for solar cells as an example, we performed CLSM correlative studies to quantify morphological and layer thickness changes during four stages of a thin-film compound synthesis. Using simple assumptions, we measured the micrometer-scale spatially resolved chemical composition of stacked precursor layers to predict the final material phases formed and predict relative device performance. The high spatial resolution, coupled with the ability to measure sizeable areas without influencing the synthesis at high speed, makes CLSM an excellent prospect for research and quality control tool for thin films.

2.
ACS Appl Mater Interfaces ; 13(2): 2642-2653, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33405505

ABSTRACT

Hybrid organic-inorganic perovskites are highly promising candidates for the upcoming generation of single- and multijunction solar cells. Despite their extraordinarily good semiconducting properties, there is a need to increase the intrinsic material stability against heat, moisture, and light exposure. Understanding how variations in synthesis affect the bulk and surface stability is therefore of paramount importance to achieve a rapid commercialization on large scales. In this work, we show for the case of methylammonium lead iodide that a thorough control of the methylammonium iodide (MAI) partial pressure during co-evaporation is essential to limit photostriction and reach phase purity, which dictate the absorber stability. Kelvin probe force microscopy measurements in ultrahigh vacuum corroborate that off-stoichiometric absorbers prepared with an excess of MAI partial pressure exhibit traces of low-dimensional (two-dimensional, 2D) perovskites and stacking faults that have adverse effects on the intrinsic material stability. Under optimized growth conditions, time-resolved photoluminescence and work functions mapping corroborate that the perovskite films are less prone to heat and light degradation.

SELECTION OF CITATIONS
SEARCH DETAIL
...