Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 59(9): 5736-46, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26169403

ABSTRACT

Novel mechanisms of action and new chemical scaffolds are needed to rejuvenate antibacterial drug discovery, and riboswitch regulators of bacterial gene expression are a promising class of targets for the discovery of new leads. Herein, we report the characterization of 5-(3-(4-fluorophenyl)butyl)-7,8-dimethylpyrido[3,4-b]quinoxaline-1,3(2H,5H)-dione (5FDQD)-an analog of riboflavin that was designed to bind riboswitches that naturally recognize the essential coenzyme flavin mononucleotide (FMN) and regulate FMN and riboflavin homeostasis. In vitro, 5FDQD and FMN bind to and trigger the function of an FMN riboswitch with equipotent activity. MIC and time-kill studies demonstrated that 5FDQD has potent and rapidly bactericidal activity against Clostridium difficile. In C57BL/6 mice, 5FDQD completely prevented the onset of lethal antibiotic-induced C. difficile infection (CDI). Against a panel of bacteria representative of healthy bowel flora, the antibacterial selectivity of 5FDQD was superior to currently marketed CDI therapeutics, with very little activity against representative strains from the Bacteroides, Lactobacillus, Bifidobacterium, Actinomyces, and Prevotella genera. Accordingly, a single oral dose of 5FDQD caused less alteration of culturable cecal flora in mice than the comparators. Collectively, these data suggest that 5FDQD or closely related analogs could potentially provide a high rate of CDI cure with a low likelihood of infection recurrence. Future studies will seek to assess the role of FMN riboswitch binding to the mechanism of 5FDQD antibacterial action. In aggregate, our results indicate that riboswitch-binding antibacterial compounds can be discovered and optimized to exhibit activity profiles that merit preclinical and clinical development as potential antibacterial therapeutic agents.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cecum/microbiology , Clostridioides difficile/drug effects , Enterocolitis, Pseudomembranous/drug therapy , Flavin Mononucleotide/therapeutic use , Flavins/therapeutic use , Animals , Clostridioides difficile/pathogenicity , Female , Mice , Mice, Inbred C57BL , Riboswitch
2.
Antimicrob Agents Chemother ; 46(4): 1080-5, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11897593

ABSTRACT

The oxazolidinones are a novel class of antimicrobial agents that target protein synthesis in a wide spectrum of gram-positive and anaerobic bacteria. The oxazolidinone PNU-100766 (linezolid) inhibits the binding of fMet-tRNA to 70S ribosomes. Mutations to oxazolidinone resistance in Halobacterium halobium, Staphylococcus aureus, and Escherichia coli map at or near domain V of the 23S rRNA, suggesting that the oxazolidinones may target the peptidyl transferase region responsible for binding fMet-tRNA. This study demonstrates that the potency of oxazolidinones corresponds to increased inhibition of fMet-tRNA binding. The inhibition of fMet-tRNA binding is competitive with respect to the fMet-tRNA concentration, suggesting that the P site is affected. The fMet-tRNA reacts with puromycin to form peptide bonds in the presence of elongation factor P (EF-P), which is needed for optimum specificity and efficiency of peptide bond synthesis. Oxazolidinone inhibition of the P site was evaluated by first binding fMet-tRNA to the A site, followed by translocation to the P site with EF-G. All three of the oxazolidinones used in this study inhibited translocation of fMet-tRNA. We propose that the oxazolidinones target the ribosomal P site and pleiotropically affect fMet-tRNA binding, EF-P stimulated synthesis of peptide bonds, and, most markedly, EF-G-mediated translocation of fMet-tRNA into the P site.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Oxazoles/pharmacology , Peptide Elongation Factors/drug effects , Ribosomes/drug effects , Acetamides/pharmacology , Bacterial Proteins/biosynthesis , Bacterial Translocation/genetics , Escherichia coli/ultrastructure , Kinetics , Linezolid , Oxazolidinones/pharmacology , Peptide Chain Initiation, Translational/drug effects , Peptide Elongation Factor G/genetics , Peptide Elongation Factors/genetics , Peptidyl Transferases/chemistry , Protein Biosynthesis/genetics , RNA, Transfer, Met/drug effects , Ribosomes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...