Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Med Chem ; 67(16): 14016-14039, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39089850

ABSTRACT

HDAC8 can mediate signals by using its enzymatic or nonenzymatic functions, which are expected to be critical for various types of cancer. Herein, we employed proteolysis targeting chimera (PROTAC) technology to target the enzymatic as well as the nonenzymatic functions of HDAC8. A potent and selective HDAC8 PROTAC Z16 (CZH-726) with low nanomolar DC50 values in various cell lines was identified. Interestingly, Z16 induced structural maintenance of chromosomes protein 3 (SMC3) hyperacetylation at low concentrations and histone hyperacetylation at high concentrations, which can be explained by HDAC8 degradation and off-target HDAC inhibition, respectively. Notably, Z16 potently inhibited proliferation of various cancer cell lines and the antiproliferative mechanisms proved to be cell-type-dependent, which, to a large extent, is due to off-target HDAC inhibition. In conclusion, we report a hydrazide-based HDAC8 PROTAC Z16, which can be used as a probe to investigate the biological functions of HDAC8.


Subject(s)
Cell Proliferation , Histone Deacetylase Inhibitors , Histone Deacetylases , Hydrazines , Proteolysis , Repressor Proteins , Humans , Histone Deacetylases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Proteolysis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Hydrazines/pharmacology , Hydrazines/chemistry , Hydrazines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Proteolysis Targeting Chimera
2.
Chemistry ; : e202402380, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011613

ABSTRACT

N-heterocyclic compounds have a broad range of applications and their selective synthesis is very appealing for the pharmaceutical and agrochemical industries. Herein we report the usage of the flavin-dependent nitroreductase BaNTR1 for the photoenzymatic synthesis of various anthranils and quinolines from retro-synthetically designed o-nitrophenyl-substituted carbonyl substrates, achieving high conversions (up to >99%) and good product yields (up to 96%). Whereas the effective production of anthranils required the inclusion of H2O2 in the reaction mixtures to accumulate the needed hydroxylamine intermediates, the formation of quinolines required the use of anaerobic or reducing conditions to efficiently generate the essential amine intermediates. Critical to our success was the high chemoselectivity of BaNTR1, performing selective reduction of the nitro group without reduction of the carbonyl moiety or the activated carbon-carbon double bond. The results highlight the usefulness of an innocuous chlorophyll- and nitroreductase-based photoenzymatic system for the tailored synthesis of diverse N-heterocycles from simple nitro compounds.

3.
Eur J Med Chem ; 276: 116665, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39013358

ABSTRACT

Despite recent advances in the treatment of cancer, the issue of therapy resistance remains one of the most significant challenges in the field. In this context, signaling molecules, such as cytokines have emerged as promising targets for drug discovery. Examples of cytokines include macrophage migration inhibitory factor (MIF) and its closely related analogue D-dopachrome tautomerase (D-DT). In this study we aim to develop a new chemical class of D-DT binders and subsequently create a dual-targeted inhibitor that can potentially trigger D-DT degradation via the Proteolysis Targeting Chimera (PROTAC) technology. Here we describe the synthesis of a novel library of 1,2,3-triazoles targeting D-DT. The most potent derivative 19c (IC50 of 0.5 ± 0.04 µM with high selectivity toward D-DT) was attached to a cereblon (CRBN) ligand through aliphatic amides, which were synthesized by a remarkably convenient and effective solvent-free reaction. Enzyme inhibition experiments led to the discovery of the compound 10d, which exhibited moderate inhibitory potency (IC50 of 5.9 ± 0.7 µM), but unfortunately demonstrated no activity in D-DT degradation experiments. In conclusion, this study offers valuable insight into the SAR of D-DT inhibition, paving the way for the development of novel molecules as tools to study D-DT functions in tumor proliferation and, ultimately, new therapeutics for cancer treatment.


Subject(s)
Enzyme Inhibitors , Intramolecular Oxidoreductases , Triazoles , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/metabolism , Humans , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry
4.
FEBS J ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946302

ABSTRACT

Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized. Within this group of enzymes, only few are capable of amine synthesis, which is a fundamental chemical transformation for the pharmaceutical, agricultural, and textile industries. Herein, we provide a comprehensive description of a recently discovered NR from Bacillus tequilensis, named BtNR. This enzyme has previously been demonstrated to have the capability to fully convert nitro aromatic and heterocyclic compounds to their respective primary amines. In this study, we determined its biochemical, kinetic and structural properties, including its apparent melting temperature (Tm) of 59 °C, broad pH activity range (from pH 3 to 10) and a notably low redox potential (-236 ± 1 mV) in comparison to other well-known NRs. We also determined its steady-state and pre-steady-state kinetic parameters, which are consistent with other NRs. Additionally, we elucidated the crystal structure of BtNR, which resembles the well-characterized Escherichia coli oxygen-insensitive NAD(P)H nitroreductase (NfsB), and investigated the substrate binding in its active site through docking and molecular dynamics studies with four nitro aromatic substrates. Guided by these structural analyses, we probed the functional roles of active site residues by site-directed mutagenesis. Our findings provide valuable insights into the biochemical and structural properties of BtNR, as well as its potential applications in biotechnology.

5.
Chembiochem ; 25(10): e202300846, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38502784

ABSTRACT

Arylamines are essential building blocks for the manufacture of valuable pharmaceuticals, pigments and dyes. However, their current industrial production involves the use of chemocatalytic procedures with a significant environmental impact. As a result, flavin-dependent nitroreductases (NRs) have received increasing attention as sustainable catalysts for more ecofriendly synthesis of arylamines. In this study, we assessed a novel NR from Bacillus tequilensis, named BtNR, for the synthesis of pharmaceutically relevant arylamines, including valuable synthons used in the manufacture of blockbuster drugs such as vismodegib, sonidegib, linezolid and sildenafil. After optimizing the enzymatic reaction conditions, high conversion of nitroaromatics to arylamines (up to 97 %) and good product yields (up to 56 %) were achieved. Our results indicate that BtNR has a broad substrate scope, including bulky nitro benzenes, nitro pyrazoles and nitro pyridines. Hence, BtNR is an interesting biocatalyst for the synthesis of pharmaceutically relevant amine-functionalized aromatics, providing an attractive alternative to traditional chemical synthesis methodologies.


Subject(s)
Amines , Bacillus , Nitroreductases , Nitroreductases/metabolism , Bacillus/enzymology , Amines/chemistry , Amines/metabolism , Amines/chemical synthesis , Biocatalysis , Molecular Structure
6.
Org Biomol Chem ; 22(3): 491-495, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38126753

ABSTRACT

Toxin A, a precursor to naturally occurring aspergillomarasmine A, aspergillomarasmine B, lycomarasmine and related aminopolycarboxylic acids, was synthesized as the desired (2S,2'S)-diastereomer on a multigram-scale (>99% conversion, 82% isolated yield, dr > 95 : 5) from commercially available starting materials using the enzyme ethylenediamine-N,N'-disuccinic acid lyase. A single-step protection route of this chiral synthon was developed to aid N-sulfonylation/-alkylation and reductive amination at the terminal primary amine for easy derivatization, followed by global deprotection to give the corresponding toxin A derivatives, including lycomarasmine, in moderate to good yields (23-66%) and with high stereopurity (dr > 95 : 5). Furthermore, a chemoenzymatic route was developed to introduce a click handle on toxin A (yield 72%, dr > 95 : 5) and its cyclized congener for further analogue design. Finally, a chemoenzymatic route towards the synthesis of photocaged aspergillomarasmine B (yield 8%, dr > 95 : 5) was established, prompting further steps into smart prodrug design and precision delivery. These new synthetic methodologies have the prospective of facilitating research into the finding of more selective and potent metallo-ß-lactamase (MBL) inhibitors, which are urgently needed to combat MBL-based infections.


Subject(s)
beta-Lactamase Inhibitors , beta-Lactamases , beta-Lactamase Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology
7.
Nat Commun ; 14(1): 5442, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673927

ABSTRACT

The selective enzymatic reduction of nitroaliphatic and nitroaromatic compounds to aliphatic amines and amino-, azoxy- and azo-aromatics, respectively, remains a persisting challenge for biocatalysis. Here we demonstrate the light-powered, selective photoenzymatic synthesis of aliphatic amines and amino-, azoxy- and azo-aromatics from the corresponding nitro compounds. The nitroreductase from Bacillus amyloliquefaciens, in synergy with a photocatalytic system based on chlorophyll, promotes selective conversions of electronically-diverse nitroarenes into a series of aromatic amino, azoxy and azo products with excellent yield (up to 97%). The exploitation of an alternative nitroreductase from Enterobacter cloacae enables the tailoring of a photoenzymatic system for the challenging synthesis of aliphatic amines from nitroalkenes and nitroalkanes (up to 90% yield). This photoenzymatic reduction overcomes the competing bio-Nef reaction, typically hindering the complete enzymatic reduction of nitroaliphatics. The results highlight the usefulness of nitroreductases to create selective photoenzymatic systems for the synthesis of precious chemicals, and the effectiveness of chlorophyll as an innocuous photocatalyst, enabling the use of sunlight to drive the photobiocatalytic reactions.


Subject(s)
Amines , Nitro Compounds , Alkanes , Alkenes , Chlorophyll
8.
Angew Chem Int Ed Engl ; 62(48): e202309012, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37639631

ABSTRACT

Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.


Subject(s)
Enzymes, Immobilized , Biocatalysis
9.
J Med Chem ; 66(13): 8767-8781, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37352470

ABSTRACT

Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine and essential signaling protein associated with inflammation and cancers. One of the newly described roles of MIF is binding to apoptosis-inducing factor (AIF) that "brings" cells to death in pathological conditions. The interaction between MIF and AIF and their nuclear translocation stands as a central event in parthanatos. However, classical competitive MIF tautomerase inhibitors do not interfere with MIF functions in parthanatos. In this study, we employed a pharmacophore-switch to provide allosteric MIF tautomerase inhibitors that interfere with the MIF/AIF co-localization. Synthesis and screening of a focused compound collection around the 1,2,3-triazole core enabled identification of the allosteric tautomerase MIF inhibitor 6y with low micromolar potency (IC50 = 1.7 ± 0.1 µM). This inhibitor prevented MIF/AIF nuclear translocation and protects cells from parthanatos. These findings indicate that alternative modes to target MIF hold promise to investigate MIF function in parthanatos-mediated diseases.


Subject(s)
Macrophage Migration-Inhibitory Factors , Parthanatos , Humans , Macrophage Migration-Inhibitory Factors/metabolism , Apoptosis Inducing Factor , Inflammation/metabolism , Intramolecular Oxidoreductases/metabolism
10.
Chemistry ; 29(31): e202300697, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36893219

ABSTRACT

Multi-enzymatic cascades exploiting engineered enzymes are a powerful tool for the tailor-made synthesis of complex molecules from simple inexpensive building blocks. In this work, we engineered the promiscuous enzyme 4-oxalocrotonate tautomerase (4-OT) into an effective aldolase with 160-fold increased activity compared to 4-OT wild type. Subsequently, we applied the evolved 4-OT variant to perform an aldol condensation, followed by an epoxidation reaction catalyzed by a previously engineered 4-OT mutant, in a one-pot two-step cascade for the synthesis of enantioenriched epoxides (up to 98 % ee) from biomass-derived starting materials. For three chosen substrates, the reaction was performed at milligram scale with product yields up to 68 % and remarkably high enantioselectivity. Furthermore, we developed a three-step enzymatic cascade involving an epoxide hydrolase for the production of chiral aromatic 1,2,3-prim,sec,sec-triols with high enantiopurity and good isolated yields. The reported one-pot, three-step cascade, with no intermediate isolation and being completely cofactor-less, provides an attractive route for the synthesis of chiral aromatic triols from biomass-based synthons.


Subject(s)
Aldehyde-Lyases , Epoxy Compounds , Epoxy Compounds/chemistry , Biomass , Biocatalysis , Aldehyde-Lyases/chemistry , Fructose-Bisphosphate Aldolase/chemistry
11.
ACS Catal ; 12(18): 11421-11427, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36158903

ABSTRACT

Chiral dihydrobenzoxazinones and dihydroquinoxalinones serve as essential building blocks for pharmaceuticals and agrochemicals. Here, we report short chemoenzymatic synthesis routes for the facile preparation of these complex heterocycles in an optically pure form. These synthetic routes involve a highly stereoselective hydroamination step catalyzed by ethylenediamine-N,N'-disuccinic acid lyase (EDDS lyase). This enzyme is capable of catalyzing the asymmetric addition of various substituted 2-aminophenols to fumarate to give a broad range of substituted N-(2-hydroxyphenyl)-l-aspartic acids with excellent enantiomeric excess (ee up to >99%). This biocatalytic hydroamination step was combined with an acid-catalyzed esterification-cyclization sequence to convert the enzymatically generated noncanonical amino acids into the desired dihydrobenzoxazinones in good overall yield (up to 63%) and high optical purity (ee up to >99%). By means of a similar one-pot, two-step chemoenzymatic approach, enantioenriched dihydroquinoxalinones (ee up to >99%) were prepared in good overall yield (up to 78%) using water as solvent for both steps. These chemoenzymatic methodologies offer attractive alternative routes to challenging dihydrobenzoxazinones and dihydroquinoxalinones, starting from simple and commercially available achiral building blocks.

12.
Chemistry ; 28(59): e202201651, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35861144

ABSTRACT

Peroxygenases selectively incorporate oxygen into organic molecules making use of the environmentally friendly oxidant H2 O2 with water being the sole by-product. These biocatalysts can provide 'green' routes for the synthesis of enantioenriched epoxides, which are fundamental intermediates in the production of pharmaceuticals. The peroxyzyme 4-oxalocrotonate tautomerase (4-OT), catalysing the epoxidation of a variety of α,ß-unsaturated aldehydes with H2 O2 , is outstanding because of its independence from any cost-intensive cofactor. However, its low-level peroxygenase activity and the decrease in the enantiomeric excess of the corresponding α,ß-epoxy-aldehydes under preparative-scale conditions is limiting the potential of 4-OT. Herein we report the directed evolution of a tandem-fused 4-OT variant, which showed an ∼150-fold enhanced peroxygenase activity compared to 4-OT wild type, enabling the synthesis of α,ß-epoxy-aldehydes in milligram- and gram-scale with high enantiopurity (up to 98 % ee) and excellent conversions. This engineered cofactor-independent peroxyzyme can provide new opportunities for the eco-friendly and practical synthesis of enantioenriched epoxides at large scale.


Subject(s)
Aldehydes , Epoxy Compounds , Oxygen , Water , Oxidants , Pharmaceutical Preparations
13.
Angew Chem Int Ed Engl ; 61(30): e202203613, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35524737

ABSTRACT

The application of biocatalysis in conquering challenging synthesis requires the constant input of new enzymes. Developing novel biocatalysts by absorbing catalysis modes from synthetic chemistry has yielded fruitful new-to-nature enzymes. Organocatalysis was originally bio-inspired and has become the third pillar of asymmetric catalysis. Transferring organocatalytic reactions back to enzyme platforms is a promising approach for biocatalyst creation. Herein, we summarize recent developments in the design of novel biocatalysts that adopt iminium catalysis, a fundamental branch in organocatalysis. By repurposing existing enzymes or constructing artificial enzymes, various biocatalysts for iminium catalysis have been created and optimized via protein engineering to promote valuable abiological transformations. Recent advances in iminium biocatalysis illustrate the power of combining chemomimetic biocatalyst design and directed evolution to generate useful new-to-nature enzymes.


Subject(s)
Directed Molecular Evolution , Protein Engineering , Biocatalysis , Catalysis , Enzymes/metabolism
14.
Chembiochem ; 23(6): e202100644, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35049100

ABSTRACT

The blockbuster drug Pregabalin is widely prescribed for the treatment of painful diabetic neuropathy. Given the continuous epidemic growth of diabetes, the development of sustainable synthesis routes for Pregabalin and structurally related pharmaceutically active γ-aminobutyric acid (GABA) derivatives is of high interest. Enantioenriched γ-nitroaldehydes are versatile synthons for the production of GABA derivatives, which can be prepared through a Michael-type addition of acetaldehyde to α,ß-unsaturated nitroalkenes. Here we report that tailored variants of the promiscuous enzyme 4-oxalocrotonate tautomerase (4-OT) can accept diverse aliphatic α,ß-unsaturated nitroalkenes as substrates for acetaldehyde addition. Highly enantioenriched aliphatic (R)- and (S)-γ-nitroaldehydes were obtained in good yields using two enantiocomplementary 4-OT variants. Our results underscore the synthetic potential of 4-OT for the preparation of structurally diverse synthons for bioactive analogues of Pregabalin.


Subject(s)
Acetaldehyde , Isomerases , Alkenes , Biocatalysis , Catalysis , Isomerases/metabolism , Nitro Compounds , Pregabalin , Proline/metabolism , Stereoisomerism , gamma-Aminobutyric Acid
15.
J Med Chem ; 65(3): 2059-2077, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35041425

ABSTRACT

The homologous cytokines macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT or MIF2) play key roles in cancers. Molecules binding to the MIF tautomerase active site interfere with its biological activity. In contrast, the lack of potent MIF2 inhibitors hinders the exploration of MIF2 as a drug target. In this work, screening of a focused compound collection enabled the identification of a MIF2 tautomerase inhibitor R110. Subsequent optimization provided inhibitor 5d with an IC50 of 1.0 µM for MIF2 tautomerase activity and a high selectivity over MIF. 5d suppressed the proliferation of non-small cell lung cancer cells in two-dimensional (2D) and three-dimensional (3D) cell cultures, which can be explained by the induction of cell cycle arrest via deactivation of the mitogen-activated protein kinase (MAPK) pathway. Thus, we discovered and characterized MIF2 inhibitors (5d) with improved antiproliferative activity in cellular models systems, which indicates the potential of targeting MIF2 in cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Intramolecular Oxidoreductases/metabolism , Pyrimidinones/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Binding Sites , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Culture Techniques , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Drug Design , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Intramolecular Oxidoreductases/antagonists & inhibitors , Kinetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/metabolism , Molecular Dynamics Simulation , Phosphorylation/drug effects , Pyrimidinones/metabolism , Pyrimidinones/pharmacology , Structure-Activity Relationship
16.
Cell Mol Life Sci ; 79(2): 105, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35091838

ABSTRACT

The family of macrophage migration inhibitory factor (MIF) proteins in humans consist of MIF, its functional homolog D-dopachrome tautomerase (D-DT, also known as MIF-2) and the relatively unknown protein named DDT-like (DDTL). MIF is a pleiotropic cytokine with multiple properties in tissue homeostasis and pathology. MIF was initially found to associate with inflammatory responses and therefore established a reputation as a pro-inflammatory cytokine. However, increasing evidence demonstrates that MIF influences many different intra- and extracellular molecular processes important for the maintenance of cellular homeostasis, such as promotion of cellular survival, antioxidant signaling, and wound repair. In contrast, studies on D-DT are scarce and on DDTL almost nonexistent and their functions remain to be further investigated as it is yet unclear how similar they are compared to MIF. Importantly, the many and sometimes opposing functions of MIF suggest that targeting MIF therapeutically should be considered carefully, taking into account timing and severity of tissue injury. In this review, we focus on the latest discoveries regarding the role of MIF family members in tissue injury, inflammation and repair, and highlight the possibilities of interventions with therapeutics targeting or mimicking MIF family proteins.


Subject(s)
Cytokines/metabolism , Inflammation Mediators/metabolism , Inflammation/metabolism , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Signal Transduction/physiology , Antigens, Differentiation, B-Lymphocyte/metabolism , Cell Survival/physiology , Histocompatibility Antigens Class II/metabolism , Homeostasis/physiology , Humans , Protein Binding
17.
Angew Chem Int Ed Engl ; 61(8): e202113970, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34890491

ABSTRACT

Gene duplication and fusion are among the primary natural processes that generate new proteins from simpler ancestors. Here we adopted this strategy to evolve a promiscuous homohexameric 4-oxalocrotonate tautomerase (4-OT) into an efficient biocatalyst for enantioselective Michael reactions. We first designed a tandem-fused 4-OT to allow independent sequence diversification of adjacent subunits by directed evolution. This fused 4-OT was then subjected to eleven rounds of directed evolution to give variant 4-OT(F11), which showed an up to 320-fold enhanced activity for the Michael addition of nitromethane to cinnamaldehydes. Crystallographic analysis revealed that 4-OT(F11) has an unusual asymmetric trimeric architecture in which one of the monomers is flipped 180° relative to the others. This gene duplication and fusion strategy to break structural symmetry is likely to become an indispensable asset of the enzyme engineering toolbox, finding wide use in engineering oligomeric proteins.


Subject(s)
Isomerases , Biocatalysis , Gene Fusion , Isomerases/chemistry , Isomerases/genetics , Isomerases/metabolism , Protein Conformation , Pseudomonas putida/enzymology
18.
Chemistry ; 28(1): e202103030, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34724273

ABSTRACT

Macrophage migration inhibitory factor (MIF) and its homolog MIF2 (also known as D-dopachrome tautomerase or DDT) play key roles in cell growth and immune responses. MIF and MIF2 expression is dysregulated in cancers and neurodegenerative diseases. Accurate and convenient detection of MIF and MIF2 will facilitate research on their roles in cancer and other diseases. Herein, we report the development and application of a 4-iodopyrimidine based probe 8 for the selective labeling of MIF and MIF2. Probe 8 incorporates a fluorophore that allows in situ imaging of these two proteins. This enabled visualization of the translocation of MIF2 from the cytoplasm to the nucleus upon methylnitronitrosoguanidine stimulation of HeLa cells. This observation, combined with literature on nuclease activity for MIF, enabled the identification of nuclease activity for MIF2 on human genomic DNA.


Subject(s)
Macrophage Migration-Inhibitory Factors , HeLa Cells , Humans , Intramolecular Oxidoreductases
19.
ACS Catal ; 11(21): 13236-13243, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34765282

ABSTRACT

Class I aldolases catalyze asymmetric aldol addition reactions and have found extensive application in the biocatalytic synthesis of chiral ß-hydroxy-carbonyl compounds. However, the usefulness of these powerful enzymes for application in other C-C bond-forming reactions remains thus far unexplored. The redesign of class I aldolases to expand their catalytic repertoire to include non-native carboligation reactions therefore continues to be a major challenge. Here, we report the successful redesign of 2-deoxy-d-ribose-5-phosphate aldolase (DERA) from Escherichia coli, an archetypical class I aldolase, to proficiently catalyze enantioselective Michael additions of nitromethane to α,ß-unsaturated aldehydes to yield various pharmaceutically relevant chiral synthons. After 11 rounds of directed evolution, the redesigned DERA enzyme (DERA-MA) carried 12 amino-acid substitutions and had an impressive 190-fold enhancement in catalytic activity compared to the wildtype enzyme. The high catalytic efficiency of DERA-MA for this abiological reaction makes it a proficient "Michaelase" with potential for biocatalytic application. Crystallographic analysis provides a structural context for the evolved activity. Whereas an aldolase acts naturally by activating the enzyme-bound substrate as a nucleophile (enamine-based mechanism), DERA-MA instead acts by activating the enzyme-bound substrate as an electrophile (iminium-based mechanism). This work demonstrates the power of directed evolution to expand the reaction scope of natural aldolases to include asymmetric Michael addition reactions and presents opportunities to explore iminium catalysis with DERA-derived catalysts inspired by developments in the organocatalysis field.

20.
Angew Chem Int Ed Engl ; 60(45): 24059-24063, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34490955

ABSTRACT

Cyclopropane rings are an important structural motif frequently found in many natural products and pharmaceuticals. Commonly, biocatalytic methodologies for the asymmetric synthesis of cyclopropanes rely on repurposed or artificial heme enzymes. Here, we engineered an unusual cofactor-independent cyclopropanation enzyme based on a promiscuous tautomerase for the enantioselective synthesis of various cyclopropanes via the nucleophilic addition of diethyl 2-chloromalonate to α,ß-unsaturated aldehydes. The engineered enzyme promotes formation of the two new carbon-carbon bonds with excellent stereocontrol over both stereocenters, affording the desired cyclopropanes with high diastereo- and enantiopurity (d.r. up to 25:1; e.r. up to 99:1). Our results highlight the usefulness of promiscuous enzymes for expanding the biocatalytic repertoire for non-natural reactions.


Subject(s)
Cyclopropanes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochromes c/metabolism , Imines/metabolism , Myoglobin/metabolism , Biocatalysis , Cyclopropanes/chemistry , Imines/chemistry , Ions/chemistry , Ions/metabolism , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...