Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
JCO Precis Oncol ; 7: e2300303, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38096474

ABSTRACT

PURPOSE: There are currently no predictive molecular biomarkers to identify patients with oligometastatic disease (OMD) who will benefit from definitive-intent radiation therapy (RT). We prospectively characterized circulating tumor cell (CTC) kinetics in patients with OMD undergoing definitive-intent RT. METHODS: This prospective correlative biomarker study included patients with any solid malignancy ≤5 metastatic sites in ≤3 anatomic organ systems undergoing definitive-intent RT to all disease sites. Circulating tumor cells (CTCs) were captured and enumerated using a biomimetic cell rolling and nanotechnology-based assay functionalized with antibodies against epithelial cell adhesion molecule, against human epidermal growth factor receptor 2, and against epidermal growth factor receptor before and during RT and at follow-up visits up to 2 years post-RT. RESULTS: We enrolled 43 patients with a median follow-up of 14.3 months. The pretreatment CTC level (cells captured/mL) was not associated with the number of disease sites (median one metastatic site/patient, range 1-5) or metastasis location (bone, brain, visceral) on Wilcoxon signed-rank test, P > .05. Post-RT, 56% of patients received systemic therapy, and 72% of patients experienced subsequent local or systemic progression. For 90% of patients, a CTC level <15 within 130 days post-RT corresponded to a durable control of irradiated lesions. Patients with a favorable versus an unfavorable clearance profile experienced significantly longer progression-free survival after RT (median 13 v 4 months, log-rank test, P = .0011). On logistic regression, CTC level >15 at a given time point was associated with clinical disease progression within the subsequent 6 months (odds ratio 3.31, P = .007). In 26% of patients with disease progression, a CTC level >15 preceded radiographic or clinical progression. CONCLUSION: CTCs may serve as a biomarker for disease control in OMD and may predict disease progression before standard assessments for patients receiving diverse cancer-directed therapies.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/metabolism , Prospective Studies , Biomarkers, Tumor/metabolism , Disease Progression
2.
Cancer Lett ; 562: 216187, 2023 05 28.
Article in English | MEDLINE | ID: mdl-37068555

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a common and deadly cancer. Circulating tumor cell (CTC) abundance may a valuable, prognostic biomarker in low- and intermediate-risk patients. However, few technologies have demonstrated success in detecting CTCs in these populations. We prospectively collected longitudinal CTC counts from two cohorts of patients receiving treatments at our institution using a highly sensitive device that purifies CTCs using biomimetic cell rolling and dendrimer-conjugated antibodies. In patients with intermediate risk human papillomavirus (HPV)-positive HNSCC, elevated CTC counts were detected in 13 of 14 subjects at screening with a median of 17 CTC/ml (range 0.2-2986.5). A second cohort of non-metastatic, HPV- HNSCC subjects received cetuximab monotherapy followed by surgical resection. In this cohort, all subjects had elevated baseline CTC counts median of 73 CTC/ml (range 5.4-332.9) with statistically significant declines during treatment. Interestingly, two patients with recurrent disease had elevated CTC counts during and following treatment, which also correlated with growth of size and ki67 expression in the primary tumor. The results suggest that our device may be a valuable tool for evaluating the success of less intensive treatment regimens.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Neoplastic Cells, Circulating , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Cetuximab/therapeutic use , Neoplastic Cells, Circulating/pathology , Head and Neck Neoplasms/drug therapy , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Biomarkers, Tumor/metabolism , Prognosis
3.
Biosens Bioelectron ; 226: 115117, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36753988

ABSTRACT

A highly sensitive, circulating tumor cell (CTC)-based liquid biopsy was used to monitor gastrointestinal cancer patients during treatment to determine if CTC abundance was predictive of disease recurrence. The approach used a combination of biomimetic cell rolling on recombinant E-selectin and dendrimer-mediated multivalent immunocapture at the nanoscale to purify CTCs from peripheral blood mononuclear cells. Due to the exceptionally high numbers of CTCs captured, a machine learning algorithm approach was developed to efficiently and reliably quantify abundance of immunocytochemically-labeled cells. A convolutional neural network and logistic regression model achieved 82.9% true-positive identification of CTCs with a false positive rate below 0.1% on a validation set. The approach was then used to quantify CTC abundance in peripheral blood samples from 27 subjects before, during, and following treatments. Samples drawn from the patients either prior to receiving radiotherapy or early in chemotherapy had a median 50 CTC ml-1 whole blood (range 0.6-541.6). We found that the CTC counts drawn 3 months post treatment were predictive of disease progression (p = .045). This approach to quantifying CTC abundance may be a clinically impactful in the timely determination of gastrointestinal cancer progression or response to treatment.


Subject(s)
Biosensing Techniques , Gastrointestinal Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Leukocytes, Mononuclear , Biomarkers , Nanotechnology , Biomarkers, Tumor
4.
Biosens Bioelectron ; 213: 114445, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35679646

ABSTRACT

Despite its high potential, PD-L1 expressed by tumors has not been successfully utilized as a biomarker for estimating treatment responses to immunotherapy. Circulating tumor cells (CTCs) and tumor-derived exosomes that express PD-L1 can potentially be used as biomarkers; however, currently available assays lack clinically significant sensitivity and specificity. Here, a novel peptide-based capture surface is developed to effectively isolate PD-L1-expressing CTCs and exosomes from human blood. For the effective targeting of PD-L1, this study integrates peptide engineering strategies to enhance the binding strength and specificity of a ß-hairpin peptide derived from PD-1 (pPD-1). Specifically, this study examines the effect of poly(ethylene glycol) spacers, the secondary peptide structure, and modification of peptide sequences (e.g., removal of biologically redundant amino acid residues) on capture efficiency. The optimized pPD-1 configuration captures PD-L1-expressing tumor cells and tumor-derived exosomes with 1.5-fold (p = 0.016) and 1.2-fold (p = 0.037) higher efficiencies, respectively, than their whole antibody counterpart (aPD-L1). This enhanced efficiency is translated into more clinically significant detection of CTCs (1.9-fold increase; p = 0.035) and exosomes (1.5-fold increase; p = 0.047) from patients' baseline samples, demonstrating stronger correlation with patients' treatment responses. Additionally, we confirmed that the clinical accuracy of our system can be further improved by co-analyzing the two biomarkers (bimodal CTC/exosome analysis). These data demonstrate that pPD-1-based capture is a promising approach for capturing PD-L1-expressing CTCs and exosomes, which can be used as a reliable biomarker for cancer immunotherapy.


Subject(s)
Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Immunotherapy , Liquid Biopsy , Lung Neoplasms/diagnosis , Peptides
5.
Bioconjug Chem ; 33(11): 2008-2017, 2022 11 16.
Article in English | MEDLINE | ID: mdl-35512322

ABSTRACT

Polymers constitute a diverse class of macromolecules that have demonstrated their unique advantages to be utilized for drug or gene delivery applications. In particular, polymers with a highly ordered, hyperbranched structure─"dendrons"─offer significant benefits to the design of such nanomedicines. The incorporation of dendrons into block copolymer micelles can endow various unique properties that are not typically observed from linear polymer counterparts. Specifically, the dendritic structure induces the conical shape of unimers that form micelles, thereby improving the thermodynamic stability and achieving a low critical micelle concentration (CMC). Furthermore, through a high density of highly ordered functional groups, dendrons can enhance gene complexation, drug loading, and stimuli-responsive behavior. In addition, outward-branching dendrons can support a high density of nonfouling polymers, such as poly(ethylene glycol), for serum stability and variable densities of multifunctional groups for multivalent cellular targeting and interactions. In this paper, we review the design considerations for dendron-lipid nanoparticles and dendron micelles formed from amphiphilic block copolymers intended for gene transfection and cancer drug delivery applications. These technologies are early in preclinical development and, as with other nanomedicines, face many obstacles on the way to clinical adoption. Nevertheless, the utility of dendron micelles for drug delivery remains relatively underexplored, and we believe there are significant and dramatic advancements to be made in tumor targeting with these platforms.


Subject(s)
Micelles , Nanoparticles , Polymers/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Polyethylene Glycols/chemistry
6.
Article in English | MEDLINE | ID: mdl-34984833

ABSTRACT

The development of minimally invasive tests for cancer diagnosis and prognosis will aid in the research of new treatments and improve survival rates. Liquid biopsies seek to derive actionable information from tumor material found in routine blood samples. The relative scarcity of tumor material in this complex mixture makes isolating and detecting cancerous material such as proteins, circulating tumor DNA, exosomes, and whole circulating tumor cells a challenge for device engineers. This review describes the chemistry and applications of branched and hyperbranched to improve the performance of liquid biopsy devices. These polymers can improve the performance of a liquid biopsy through several mechanisms. For example, polymers designed to increase the affinity of capture enhance device sensitivity. On the other hand, polymers designed to increase binding avidity or repel nonspecific adsorption enhance device specificity. Branched and hyperbranched polymers can also be used to amplify the signal from small amounts of detected material. The further development of hyperbranched polymers in liquid biopsy applications will enhance device capabilities and help these critical technologies reach the oncology clinic where they are sorely needed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.


Subject(s)
Exosomes , Neoplasms , Equipment Design , Humans , Liquid Biopsy , Neoplasms/diagnosis , Polymers
7.
Adv Sci (Weinh) ; 9(4): e2103098, 2022 02.
Article in English | MEDLINE | ID: mdl-34894089

ABSTRACT

The multivalent binding effect has been the subject of extensive studies to modulate adhesion behaviors of various biological and engineered systems. However, precise control over the strong avidity-based binding remains a significant challenge. Here, a set of engineering strategies are developed and tested to systematically enhance the multivalent binding of peptides in a stepwise manner. Poly(amidoamine) (PAMAM) dendrimers are employed to increase local peptide densities on a substrate, resulting in hierarchically multivalent architectures (HMAs) that display multivalent dendrimer-peptide conjugates (DPCs) with various configurations. To control binding behaviors, effects of the three major components of the HMAs are investigated: i) poly(ethylene glycol) (PEG) linkers as spacers between conjugated peptides; ii) multiple peptides on the DPCs; and iii) various surface arrangements of HMAs (i.e., a mixture of DPCs each containing different peptides vs DPCs cofunctionalized with multiple peptides). The optimized HMA configuration enables significantly enhanced target cell binding with high selectivity compared to the control surfaces directly conjugated with peptides. The engineering approaches presented herein can be applied individually or in combination, providing guidelines for the effective utilization of biomolecular multivalent interactions using DPC-based HMAs.


Subject(s)
Breast Neoplasms/metabolism , Cell Adhesion , Nanoparticles/metabolism , Peptides/metabolism , Cell Line, Tumor , Dendrimers/metabolism , Humans , Physical Phenomena , Polyethylene Glycols/metabolism
9.
PLoS One ; 15(12): e0242145, 2020.
Article in English | MEDLINE | ID: mdl-33264292

ABSTRACT

Although circulating cell-free DNA (cfDNA) is a promising biomarker for the diagnosis and prognosis of various tumors, clinical correlation of cfDNA with gastric cancer has not been fully understood. To address this, we developed a highly sensitive cfDNA capture system by integrating polydopamine (PDA) and silica. PDA-silica hybrids incorporated different molecular interactions to a single system, enhancing cfDNA capture by 1.34-fold compared to the conventional silica-based approach (p = 0.001), which was confirmed using cell culture supernatants. A clinical study using human plasma samples revealed that the diagnostic accuracy of the new system to be superior than the commercially available cfDNA kit, as well as other serum antigen tests. Among the cancer patients, plasma cfDNA levels exhibited a good correlation with the size of a tumor. cfDNA was also predicative of distant metastasis, as the median cfDNA levels of metastatic cancer patients were ~60-fold higher than those without metastasis (p = 0.008). Furthermore, high concordance between tissue biopsy and cfDNA genomic analysis was found, as HER2 expression in cfDNA demonstrated an area under ROC curve (AUC) of 0.976 (p <0.001) for detecting patients with HER2-positive tumors. The new system also revealed high prognostic capability of cfDNA, as the concentration of cfDNA was highly associated with the survival outcomes. Our novel technology demonstrates the potential to achieve efficient detection of cfDNA that may serve as a reliable biomarker for gastric tumor.


Subject(s)
Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/isolation & purification , Early Detection of Cancer , Stomach Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Female , Humans , Male , Middle Aged , Prognosis , Silicon Dioxide/chemistry , Stomach Neoplasms/blood , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
10.
Nano Lett ; 20(7): 4901-4909, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32510959

ABSTRACT

Upregulation of programmed death ligand 1 (PD-L1) allows cancer cells to evade antitumor immunity. Despite tremendous efforts in developing PD-1/PD-L1 immune checkpoint inhibitors (ICIs), clinical trials using such ICIs have shown inconsistent benefits. Here, we hypothesized that the ICI efficacy would be dictated by the binding strength of the inhibitor to the target proteins. To assess this, hyperbranched, multivalent poly(amidoamine) dendrimers were employed to prepare dendrimer-ICI conjugates (G7-aPD-L1). Binding kinetics measurements using SPR, BLI, and AFM revealed that G7-aPD-L1 exhibits significantly enhanced binding strength to PD-L1 proteins, compared to free aPD-L1. The binding avidity of G7-aPD-L1 was translated into in vitro efficiency and in vivo selectivity, as the conjugates improved the PD-L1 blockade effect and enhanced accumulation in tumor sites. Our results demonstrate that the dendrimer-mediated multivalent interaction substantially increases the binding avidity of the ICIs and thereby improves the antagonist effect, providing a novel platform for cancer immunotherapy.


Subject(s)
B7-H1 Antigen , Nanoparticles , Antibodies, Monoclonal , Immunotherapy , Programmed Cell Death 1 Receptor
11.
Nano Lett ; 20(8): 5686-5692, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32407121

ABSTRACT

Tumor-derived blood-circulating exosomes have potential as a biomarker to greatly improve cancer treatment. However, effective isolation of exosomes remains a tremendous technical challenge. This study presents a novel nanostructured polymer surface for highly effective capture of exosomes through strong avidity. Various surface configurations, consisting of multivalent dendrimers, PEG, and tumor-targeting antibodies, were tested using exosomes isolated from tumor cell lines. We found that a dual layer dendrimer configuration exhibited the highest efficiency in capturing cultured exosomes spiked into human serum. Importantly, the optimized surface captured a > 4-fold greater amount of tumor exosomes from head and neck cancer patient plasma samples than that from healthy donors. Nanomechanical analysis using atomic force microscopy also revealed that the enhancement was attributed to multivalent binding (avidity) and augmented short-range adhesion mediated by dendrimers. Our results support that the dendrimer surface detects tumor exosomes at high sensitivity and specificity, demonstrating its potential as a new cancer liquid biopsy platform.


Subject(s)
Dendrimers , Exosomes , Cell Line, Tumor , Humans , Polyamines
12.
Biosens Bioelectron ; 162: 112250, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32392161

ABSTRACT

Sensitive detection of circulating tumor cells (CTCs) from patients' peripheral blood facilitates on-demand monitoring of tumor progression. However, clinically significant capture of renal cell carcinoma CTCs (RCC-CTCs) remains elusive due to their heterogenous surface receptor expression. Herein, a novel capture platform is developed to detect RCC-CTCs through integration of dendrimer-mediated multivalent binding, a mixture of antibodies, and biomimetic cell rolling. The nanoscale binding kinetics measured using atomic force microscopy reveal that dendrimer-coated surfaces exhibit an order of magnitude enhancement in off-rate kinetics compared to surface without dendrimers, which translated into cell capture improvements by ~60%. Selectin-induced cell rolling facilitates surface recruitment of cancer cells, further improving cancer cell capture by up to 1.7-fold. Lastly, an antibody cocktail targeting four RCC-CTC surface receptors, which included epithelial cell adhesion molecule (EpCAM), carbonic anhydrase IX (CA9), epidermal growth factor receptor (EGFR), and hepatocyte growth factor receptor (c-Met), improves the capture of RCC cells by up to 80%. The optimal surface configuration outperforms the conventional assay solely relying on EpCAM, as demonstrated by detecting significantly more CTCs in patients' samples (9.8 ± 5.1 vs. 1.8 ± 2.0 CTCs mL-1). These results demonstrate that the newly engineered capture platform effectively detects RCC-CTCs for their potential use as tumor biomarkers.


Subject(s)
Carcinoma, Renal Cell/pathology , Cell Separation/instrumentation , Kidney Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Antibodies, Immobilized/chemistry , Biosensing Techniques/instrumentation , Carcinoma, Renal Cell/blood , Cell Line, Tumor , Dendrimers/chemistry , Equipment Design , Humans , Kidney Neoplasms/blood , Nanoparticles/chemistry , Surface Properties
13.
Front Pharmacol ; 11: 607689, 2020.
Article in English | MEDLINE | ID: mdl-33384604

ABSTRACT

Idiopathic Pulmonary Fibrosis (IPF) is a chronically progressive interstitial lung that affects over 3 M people worldwide and rising in incidence. With a median survival of 2-3 years, IPF is consequently associated with high morbidity, mortality, and healthcare burden. Although two antifibrotic therapies, pirfenidone and nintedanib, are approved for human use, these agents reduce the rate of decline of pulmonary function but are not curative and do not reverse established fibrosis. In this review, we discuss the prevailing epithelial injury hypothesis, wherein pathogenic airway epithelial cell-state changes known as Epithelial Mesenchymal Transition (EMT) promotes the expansion of myofibroblast populations. Myofibroblasts are principal components of extracellular matrix production that result in airspace loss and mortality. We review the epigenetic transition driving EMT, a process produced by changes in histone acetylation regulating mesenchymal gene expression programs. This mechanistic work has focused on the central role of bromodomain-containing protein 4 in mediating EMT and myofibroblast transition and initial preclinical work has provided evidence of efficacy. As nanomedicine presents a promising approach to enhancing the efficacy of such anti-IPF agents, we then focus on the state of nanomedicine formulations for inhalable delivery in the treatment of pulmonary diseases, including liposomes, polymeric nanoparticles (NPs), inorganic NPs, and exosomes. These nanoscale agents potentially provide unique properties to existing pulmonary therapeutics, including controlled release, reduced systemic toxicity, and combination delivery. NP-based approaches for pulmonary delivery thus offer substantial promise to modify epigenetic regulators of EMT and advance treatments for IPF.

14.
Nanomedicine ; 21: 102059, 2019 10.
Article in English | MEDLINE | ID: mdl-31310808

ABSTRACT

Ultrasmall nanoparticles (NPs, <10 nm) have promise in cancer treatment, yet little is known about how NP physical properties influence penetration through solid tumors. To elucidate the role of NP size and structure, we prepared a series of sub-10 nm poly(amidoamine) (PAMAM) dendrimers and gold NPs (AuNP), and evaluated penetration in multicellular tumor spheroids (MCTS). Smaller generation 2 dendrimers (G2-NH2, 2.9 nm diameter) penetrated 2.5-fold deeper than larger G7-NH2 (8.1 nm) (P = 0.0005). Despite increased accumulation within MCTS, electrostatic cell interactions and ligand (folic acid, FA)-mediated targeting had minimal influence on penetration. NP rigidity played a minor role in penetration, with smaller rigid AuNP (2 nm) penetrating significantly more than larger AuNP (4 nm) (3-fold, P = 0.014; G2-NH2 vs. G4-NH2, 2.8-fold, P = 0.033). Our findings highlight the importance of rational NP design and provide design cues for tailored NP distributions within solid tumors.


Subject(s)
Dendrimers , Drug Delivery Systems , Gold , Metal Nanoparticles , Neoplasms , Spheroids, Cellular , Dendrimers/chemistry , Dendrimers/pharmacokinetics , Dendrimers/pharmacology , Gold/chemistry , Gold/pharmacokinetics , Gold/pharmacology , Humans , MCF-7 Cells , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
15.
Anal Chem ; 91(13): 8374-8382, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31247718

ABSTRACT

Detection of circulating tumor cells (CTCs) relying on their expression of epithelial cell markers, such as epithelial cell adhesion molecule (EpCAM), has been commonly used. However, this approach unlikely captures CTCs that have undergone the process of epithelial-mesenchymal transition (EMT). In this study, we have induced EMT of in vitro prostate (PCa) and breast cancer (BCa) cell lines by treatment of transforming growth factor ß 1 (TGFß1), a pleiotropic cytokine with transition-regulating activities. We found that the TGFß1-treated, post-EMT cells exhibited up to a 45% reduction in binding affinity to antibodies against EpCAM (aEpCAM). To overcome this limitation, we designed our capture platform that integrates a unique combination of biomimetic cell rolling, dendrimer-mediated multivalent binding, and antibody cocktails of aEpCAM/aEGFR/aHER-2. Our capture surfaces resulted in up to 98% capture efficiency of post-EMT cells from mixtures of TGFß1-treated and untreated cancer cells spiked in culture media and human blood. In a clinical pilot study, our CTC device was also able to capture rare CTCs from PCa patients with significantly enhanced capture sensitivity and purity compared to the control surface with aEpCAM only, demonstrating its potential to provide a reliable detection solution for CTCs regardless of their EMT status.


Subject(s)
Breast Neoplasms/pathology , Cell Separation/methods , Dendrimers/chemistry , Epithelial-Mesenchymal Transition , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/pathology , Transforming Growth Factor beta1/administration & dosage , Breast Neoplasms/blood , Cell Proliferation , Epithelial Cell Adhesion Molecule/chemistry , Epithelial Cell Adhesion Molecule/metabolism , Female , Humans , Male , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/metabolism , Pilot Projects , Prostatic Neoplasms/blood , Tumor Cells, Cultured
16.
Acta Biomater ; 83: 435-455, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30408560

ABSTRACT

With the increasing demand for novel bone repair solutions that overcome the drawbacks of current grafting techniques, the design of artificial bone scaffolds is a central focus in bone regeneration research. Calcium phosphate scaffolds are interesting given their compositional similarity with bone mineral. The majority of studies focus on bone growth in the macropores (>100 µm) of implanted calcium phosphate scaffolds where bone structures such as osteons and trabeculae can form. However, a growing body of research shows that micropores (<50 µm) play an important role not only in improving bone growth in the macropores, but also in providing additional space for bone growth. Bone growth in the micropores of calcium phosphate scaffolds offers major mechanical advantages as it improves the mechanical properties of the otherwise brittle materials, further stabilizes the implant, improves load transfer, and generally enhances osteointegration. In this paper, we review evidence in the literature of bone growth into micropores, emphasizing on identification techniques and conditions under which bone components are observed in the micropores. We also review theories on mineralization and propose mechanisms, mediated by cells or not, by which mineralization may occur in the confined micropore space of calcium phosphate scaffolds. Understanding and validating these mechanisms will allow to better control and enhance mineralization in micropores to improve the design and efficiency of bone implants. STATEMENT OF SIGNIFICANCE: The design of synthetic bone scaffolds remains a major focus for engineering solutions to repair damaged and diseased bone. Most studies focus on the design of and growth in macropores (>100 µm), however research increasingly shows the importance of microporosity (<50 µm). Micropores provide an additional space for bone growth, which provides multiple mechanical advantages to the scaffold/bone composite. Here, we review evidence of bone growth into micropores in calcium phosphate scaffolds and conditions under which growth occurs in micropores, and we propose mechanisms that enable or facilitate growth in these pores. Understanding these mechanisms will allow researchers to exploit them and improve the design and efficiency of bone implants.


Subject(s)
Biocompatible Materials , Bone Development/drug effects , Bone Regeneration , Bone Substitutes , Bone and Bones , Calcium Phosphates , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Bone Substitutes/chemistry , Bone Substitutes/therapeutic use , Bone and Bones/metabolism , Bone and Bones/pathology , Calcium Phosphates/chemistry , Calcium Phosphates/therapeutic use , Humans
17.
Nanomedicine (Lond) ; 13(18): 2327-2340, 2018 09.
Article in English | MEDLINE | ID: mdl-30284494

ABSTRACT

Ischemic stroke is a leading cause of death and disability worldwide and is in urgent need of new treatment options. The only approved treatment for stroke restores blood flow to the brain, but much of the tissue damage occurs during the subsequent reperfusion. Antioxidant therapies that directly address ischemia-reperfusion injury have shown promise in preclinical results. In this review, we discuss that reformulating antioxidant therapies as nanomedicine can potentially overcome the barriers that have kept these therapies from succeeding in the clinic. We begin by reviewing the pathophysiology of ischemic stroke with a focus on the effects of reperfusion injury. Next, we review nanotherapeutic systems designed to treat the disease with a focus on those addressing reperfusion injury. Mechanisms of passive and active transport required to traverse a blood-brain barrier are discussed. Finally, we conclude by outlining design parameters for potentially successful nanomedicines as front-line therapeutics for ischemic stroke.


Subject(s)
Antioxidants/chemistry , Brain Ischemia/metabolism , Nanomedicine/methods , Nanoparticles/chemistry , Animals , Blood-Brain Barrier/metabolism , Humans , Reperfusion Injury/metabolism , Stroke/metabolism
18.
ACS Nano ; 12(7): 7406-7414, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29957934

ABSTRACT

Herein we demonstrate the formation of stereocomplex prodrugs of oligo(l-lactic acid) n-gemcitabine (o(LLA) n-GEM) and oligo(d-lactic acid) n-gemcitabine (o(DLA) n-GEM) for stable incorporation in poly(ethylene glycol)- block-poly(d,l-lactic acid) (PEG- b-PLA) micelles. O(LLA) n or o(DLA) n was attached at the amino group (4-( N)) of GEM via an amide linkage. When n = 10, a 1:1 mixture of o(LLA)10-GEM and o(DLA)10-GEM (o(L+DLA)10-GEM) was able to form a stereocomplex with a distinctive crystalline pattern. Degradation of o(L+DLA)10-GEM was driven by both backbiting conversion and esterase contribution, generating primarily o(L+DLA)1-GEM and GEM. O(L+DLA)10-GEM stably loaded in PEG- b-PLA micelles in the size range of 140-200 nm with an unexpected elongated morphology. The resulting micelles showed improved physical stability in aqueous media and inhibited backbiting conversion of o(L+DLA)10-GEM within micelles. Release of o(L+DLA)10-GEM from micelles was relatively slow, with a t1/2 at ca. 60 h. Furthermore, weekly administration of o(L+DLA)10-GEM micelles i.v. displayed potent antitumor activity in an A549 human non-small-cell lung carcinoma xenograft model. Thus, stereocomplexation of isotactic o(LLA) n and o(DLA) n acts as a potential prodrug strategy for improved stability and sustained drug release in PEG- b-PLA micelles.


Subject(s)
Antineoplastic Agents/pharmacology , Deoxycytidine/analogs & derivatives , Lactates/pharmacology , Lactic Acid/pharmacology , Micelles , Polyethylene Glycols/pharmacology , Prodrugs/pharmacology , A549 Cells , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Drug Screening Assays, Antitumor , Female , Humans , Lactates/chemistry , Lactic Acid/chemistry , Mice , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Polyethylene Glycols/chemistry , Prodrugs/chemistry , Stereoisomerism , Gemcitabine
19.
Clin Cancer Res ; 24(11): 2539-2547, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29545463

ABSTRACT

Purpose: We aimed to examine the effects of multivalent binding and biomimetic cell rolling on the sensitivity and specificity of circulating tumor cell (CTC) capture. We also investigated the clinical significance of CTCs and their kinetic profiles in patients with cancer undergoing radiotherapy treatment.Experimental Design: Patients with histologically confirmed primary carcinoma undergoing radiotherapy, with or without chemotherapy, were eligible for enrollment. Peripheral blood was collected prospectively at up to five time points, including before radiotherapy, at the first week, mid-point and final week of treatment, as well as 4 to 12 weeks after completion of radiotherapy. CTC capture was accomplished using a nanotechnology-based assay (CapioCyte) functionalized with aEpCAM, aHER-2, and aEGFR.Results: CapioCyte was able to detect CTCs in all 24 cancer patients enrolled. Multivalent binding via poly(amidoamine) dendrimers further improved capture sensitivity. We also showed that cell rolling effect can improve CTC capture specificity (% of captured cells that are CK+/CD45-/DAPI+) up to 38%. Among the 18 patients with sequential CTC measurements, the median CTC decreased from 113 CTCs/mL before radiotherapy to 32 CTCs/mL at completion of radiotherapy (P = 0.001). CTCs declined throughout radiotherapy in patients with complete clinical and/or radiographic response, in contrast with an elevation in CTCs at mid or post-radiotherapy in the two patients with known pathologic residual disease.Conclusions: Our study demonstrated that multivalent binding and cell rolling can improve the sensitivity and specificity of CTC capture compared with multivalent binding alone, allowing reliable monitoring of CTC changes during and after treatment. Clin Cancer Res; 24(11); 2539-47. ©2018 AACR.


Subject(s)
Biomimetics , Cell Movement , Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Biomarkers , Biomarkers, Tumor , Biomimetics/methods , Biomimetics/standards , Case-Control Studies , Cell Count , Cell Separation , Humans , Neoplasms/diagnosis , Neoplasms/therapy , Neoplastic Cells, Circulating/metabolism , Radiotherapy/methods , Sensitivity and Specificity , Treatment Outcome
20.
RSC Adv ; 9(1): 52-57, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-35521586

ABSTRACT

Thermotherapy has demonstrated a potential to be an effective non-surgical technique to treat breast cancer. Despite its advantages, including low toxicity and high repeatability, thermotherapy is typically required to be applied in combination with other treatments since the residual tumor cells that survive after hyperthermal treatment often cause recurrence. In this study, we confirmed that breast cancer cells tolerate temperature of up to 47 °C by synthesizing a large amount of heat shock proteins. Further changes in the molecular properties of the heat-exposed cells were investigated using western blotting, quantitative reverse transcription polymerase chain reaction, and immunocytochemistry. We found that low-temperature hyperthermia promoted epithelial-to-mesenchymal-like transition (EMT), as observed by the increased mesenchymal marker expression levels while decreasing epithelial markers. Moreover, cell morphology changed from cobblestone-like to a more spindle-like appearance, in addition to significantly enhanced cell motility upon heat treatment. These results all support that sub-lethal hyperthermal stress induces EMT. In addition, we examined changes in the chemo-sensitivity of the heat-treated cells. Addition of a chemo-drugs caused increased cytotoxicity of the heat-treated cells compared to the cells that were not co-treated with heat. Our study demonstrates that thermotherapy alone may cause undesirable EMT, which could be well overcome through a synergistic effect when applied with chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...