Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(10): 5362-5373, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38375669

ABSTRACT

Metal nanoparticle (NP) sintering is a major cause of catalyst deactivation, as NP growth reduces the surface area available for reaction. A promising route to halt sintering is to deposit a protective overcoat on the catalyst surface, followed by annealing to generate overlayer porosity for gas transport to the NPs. Yet, such a combined deposition-annealing approach lacks structural control over the cracked protection layer and the number of NP surface atoms available for reaction. Herein, we exploit the tailoring capabilities of atomic layer deposition (ALD) to deposit MgO overcoats on archetypal Pt NP catalysts with thicknesses ranging from sub-monolayers to nm-range thin films. Two different ALD processes are studied for the growth of MgO overcoats on Pt NPs anchored on a SiO2 support, using Mg(EtCp)2 and H2O, and Mg(TMHD)2 and O3, respectively. Spectroscopic ellipsometry and X-ray photoelectron spectroscopy measurements reveal significant growth on both SiO2 and Pt for the former process, while the latter exhibits a drastically lower growth per cycle with an initial chemical selectivity towards Pt. These differences in MgO growth characteristics have implications for the availability of uncoated Pt surface atoms at different stages of the ALD process, as probed by low energy ion scattering, and for the sintering behavior during O2 annealing, as monitored in situ with grazing incidence small angle X-ray scattering (in situ GISAXS). The Mg(TMHD)2-O3 ALD process enables exquisite coverage control allowing a balance between physically blocking the Pt surface to prevent sintering and keeping Pt surface atoms free for reaction. This approach avoids the need for post-annealing, hence also safeguarding the structural integrity of the as-deposited overcoat.

2.
J Phys Chem Lett ; 13(34): 7947-7952, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35981090

ABSTRACT

MgAl2O4-supported Ni materials are highly active and cost-effective CO2 conversion catalysts, yet their oxidation by CO2 remains dubious. Herein, NiO/MgAl2O4, prepared via colloidal synthesis (10 wt % Ni) to limit size distribution, or wet impregnation (5, 10, 20, and 40 wt % Ni), and bare, i.e., unsupported, NiO are examined in H2 reduction and CO2 oxidation, using thermal conductivity detector-based measurements and in situ quick X-ray absorption spectroscopy, analyzed via multivariate curve resolution-alternating least-squares. Ni reoxidation does not occur for bare Ni but is observed solely on supported materials. Only samples with the smallest particle sizes get fully reoxidized. The Ni-MgAl2O4 interface, exhibiting metal-support interactions, activates CO2 and channels oxygen into the reduced lattice. Oxygen diffuses inward, away from the interface, oxidizing Ni entirely or partially, depending on the particle size in the applied oxidation time frame. This work provides evidence for Ni oxidation by CO2 and explores the conditions of its occurrence and the importance of metal-support effects.

3.
Faraday Discuss ; 236(0): 485-509, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35543256

ABSTRACT

The spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO2 catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research.

4.
Molecules ; 25(16)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824236

ABSTRACT

Supported nanoparticles are commonly applied in heterogeneous catalysis. The catalytic performance of these solid catalysts is, for a given support, dependent on the nanoparticle size, shape, and composition, thus necessitating synthesis techniques that allow for preparing these materials with fine control over those properties. Such control can be exploited to deconvolute their effects on the catalyst's performance, which is the basis for knowledge-driven catalyst design. In this regard, bottom-up synthesis procedures based on colloidal chemistry or atomic layer deposition (ALD) have proven successful in achieving the desired level of control for a variety of fundamental studies. This review aims to give an account of recent progress made in the two aforementioned synthesis techniques for the application of controlled catalytic materials in gas-phase catalysis. For each technique, the focus goes to mono- and bimetallic materials, as well as to recent efforts in enhancing their performance by embedding colloidal templates in porous oxide phases or by the deposition of oxide overlayers via ALD. As a recent extension to the latter, the concept of area-selective ALD for advanced atomic-scale catalyst design is discussed.


Subject(s)
Alloys/chemistry , Colloids/chemistry , Gases/chemistry , Nanoparticles/chemistry , Catalysis , Porosity , Surface Properties
5.
Phys Chem Chem Phys ; 22(16): 9124-9136, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32301468

ABSTRACT

Atomic layer deposition (ALD) of noble metals is an attractive technology potentially applied in nanoelectronics and catalysis. Unlike the combustion-like mechanism shown by other noble metal ALD processes, the main palladium (Pd) ALD process using palladium(ii)hexafluoroacetylacetonate [Pd(hfac)2] as precursor is based on true reducing surface chemistry. In this work, a thorough investigation of plasma-enhanced Pd ALD is carried out by employing this precursor with different plasmas (H2*, NH3*, O2*) and plasma sequences (H2* + O2*, O2* + H2*) as co-reactants at varying temperatures, providing insights in the co-reactant and temperature dependence of the Pd growth per cycle (GPC). At all temperatures, films grown with only reducing co-reactants contain a large amount of carbon, while an additional O2* in the co-reactant sequence helps to obtain Pd films with much lower impurity concentrations. Remarkably, in situ XRD and SEM show an abrupt release of the carbon impurities during annealing at moderate temperatures in different atmospheres. In vacuo XPS measurements reveal the remaining species on the as-deposited surface after every exposure. Links are established between the particular surface termination prior to the precursor pulse and the observed differences in GPC, highlighting hydrogen as the key growth facilitator and carbon and oxygen as growth inhibitors. The increase in GPC with temperature for ALD sequences with H2* or NH3* prior to the precursor pulse is explained by an increase in the amount of hydrogen species that reside on the Pd surface which are available for reaction with the Pd(hfac)2 precursor.

6.
Angew Chem Int Ed Engl ; 58(38): 13220-13230, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-30934165

ABSTRACT

Bimetallic nanocatalysts are key enablers of current chemical technologies, including car exhaust converters and fuel cells, and play a crucial role in industry to promote a wide range of chemical reactions. However, owing to significant characterization challenges, insights in the dynamic phenomena that shape and change the working state of the catalyst await further refinement. Herein, we discuss the atomic-scale processes leading to mono- and bimetallic nanoparticle formation and highlight the dynamics and kinetics of lifetime changes in bimetallic catalysts with showcase examples for Pt-based systems. We discuss how in situ and operando X-ray spectroscopy, scattering, and diffraction can be used as a complementary toolbox to interrogate the working principles of today's and tomorrow's bimetallic nanocatalysts.

7.
Angew Chem Int Ed Engl ; 57(38): 12430-12434, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30067303

ABSTRACT

Alloyed metal nanocatalysts are of environmental and economic importance in a plethora of chemical technologies. During the catalyst lifetime, supported alloy nanoparticles undergo dynamic changes which are well-recognized but still poorly understood. High-temperature O2 -H2 redox cycling was applied to mimic the lifetime changes in model Pt13 In9 nanocatalysts, while monitoring the induced changes by in situ quick X-ray absorption spectroscopy with one-second resolution. The different reaction steps involved in repeated Pt13 In9 segregation-alloying are identified and kinetically characterized at the single-cycle level. Over longer time scales, sintering phenomena are substantiated and the intraparticle structure is revealed throughout the catalyst lifetime. The in situ time-resolved observation of the dynamic habits of alloyed nanoparticles and their kinetic description can impact catalysis and other fields involving (bi)metallic nanoalloys.

8.
Materials (Basel) ; 11(7)2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29996567

ABSTRACT

Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the cyclic transformation of a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO2 stream is produced, which significantly improves the CO2 capture efficiency. In chemical looping reforming, CO2 can be used as an oxidizer, resulting in a novel approach for efficient CO2 utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO2 utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping.

9.
Materials (Basel) ; 11(5)2018 May 17.
Article in English | MEDLINE | ID: mdl-29772842

ABSTRACT

The role of iron in view of its further utilization in chemical processes is presented, based on current knowledge of its properties. The addition of iron to a catalyst provides redox functionality, enhancing its resistance to carbon deposition. FeOx species can be formed in the presence of an oxidizing agent, such as CO2, H2O or O2, during reaction, which can further react via a redox mechanism with the carbon deposits. This can be exploited in the synthesis of active and stable catalysts for several processes, such as syngas and chemicals production, catalytic oxidation in exhaust converters, etc. Iron is considered an important promoter or co-catalyst, due to its high availability and low toxicity that can enhance the overall catalytic performance. However, its operation is more subtle and diverse than first sight reveals. Hence, iron and its oxides start to become a hot topic for more scientists and their findings are most promising. The scope of this article is to provide a review on iron/iron-oxide containing catalytic systems, including experimental and theoretical evidence, highlighting their properties mainly in view of syngas production, chemical looping, methane decomposition for carbon nanotubes production and propane dehydrogenation, over the last decade. The main focus goes to Fe-containing nano-alloys and specifically to the Fe⁻Ni nano-alloy, which is a very versatile material.

10.
ACS Appl Mater Interfaces ; 9(28): 23949-23956, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28677951

ABSTRACT

V2O5 with a layered van der Waals (vdW) structure has been widely studied because of the material's potential in applications such as battery electrodes. In this work, microelectronic devices were fabricated to study the electrical and optical properties of mechanically exfoliated multilayered V2O5 flakes. Raman spectroscopy was used to determine the crystal structure axes of the nanoflakes and revealed that the intensities of the Raman modes depend strongly on the relative orientation between the crystal axes and the polarization directions of incident/scattered light. Angular dependence of four-probe resistance measured in the van der Pauw (vdP) configuration revealed an in-plane anisotropic resistance ratio of ∼100 between the a and b crystal axes, the largest in-plane transport anisotropy effect experimentally reported for two-dimensional (2D) materials to date. This very large resistance anisotropic ratio is explained by the nonuniform current flow in the vdP measurement and an intrinsic mobility anisotropy ratio of 10 between the a and b crystal axes. Room-temperature electron Hall mobility up to 7 cm2/(V s) along the high-mobility direction was obtained. This work demonstrates V2O5 as a layered 2D vdW oxide material with strongly anisotropic optical and electronic properties for novel applications.

11.
Science ; 354(6311): 449-452, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27738013

ABSTRACT

Efficient CO2 transformation from a waste product to a carbon source for chemicals and fuels will require reaction conditions that effect its reduction. We developed a "super-dry" CH4 reforming reaction for enhanced CO production from CH4 and CO2 We used Ni/MgAl2O4 as a CH4-reforming catalyst, Fe2O3/MgAl2O4 as a solid oxygen carrier, and CaO/Al2O3 as a CO2 sorbent. The isothermal coupling of these three different processes resulted in higher CO production as compared with that of conventional dry reforming, by avoiding back reactions with water. The reduction of iron oxide was intensified through CH4 conversion to syngas over Ni and CO2 extraction and storage as CaCO3 CO2 is then used for iron reoxidation and CO production, exploiting equilibrium shifts effected with inert gas sweeping (Le Chatelier's principle). Super-dry reforming uses up to three CO2 molecules per CH4 and offers a high CO space-time yield of 7.5 millimole CO per second per kilogram of iron at 1023 kelvin.

12.
ACS Nano ; 10(9): 8770-7, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27585708

ABSTRACT

Since their early discovery, bimetallic nanoparticles have revolutionized various fields, including nanomagnetism and optics as well as heterogeneous catalysis. Knowledge buildup in the past decades has witnessed that the nanoparticle size and composition strongly impact the nanoparticle's properties and performance. Yet, conventional synthesis strategies lack proper control over the nanoparticle morphology and composition. Recently, atomically precise synthesis of bimetallic nanoparticles has been achieved by atomic layer deposition (ALD), alleviating particle size and compositional nonuniformities. However, this bimetal ALD strategy applies to noble metals only, a small niche within the extensive class of bimetallic alloys. We report an ALD-based approach for the tailored synthesis of bimetallic nanoparticles containing both noble and non-noble metals, here exemplified for Pt-In. First, a Pt/In2O3 bilayer is deposited by ALD, yielding precisely defined Pt-In nanoparticles after high-temperature H2 reduction. The nanoparticles' In content can be accurately controlled over the whole compositional range, and the particle size can be tuned from micrometers down to the nanometer scale. The size and compositional flexibility provided by this ALD-approach will trigger the fabrication of fully tailored bimetallic nanomaterials, including superior nanocatalysts.

13.
Phys Chem Chem Phys ; 18(4): 3234-43, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26742561

ABSTRACT

Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms - such as hydrogen-spillover, surface migration - have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 °C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga(3+) cations in the support. Only in the presence of Pt, partial reduction of Ga(3+) into Ga(δ+) is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga(3+) is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Ga(δ+)Ox migrates towards Pt clusters, where Ga(δ+) is only fully reduced to Ga(0) on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.

14.
Anal Chem ; 87(6): 3520-6, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25704379

ABSTRACT

Complementary to conventional X-ray absorption near edge structure (XANES) and Fourier transformed (FT) extended X-ray absorption fine structure (EXAFS) analysis, the systematic application of wavelet transformed (WT) XAS is shown to disclose the physicochemical mechanisms governing Pt-In catalyst formation. The simultaneous k- and R-space resolution of the WT XAS signal allows for the efficient allocation of the elemental nature to each R-space peak. Because of its elemental discrimination capacity, the technique delivers structural models which can subsequently serve as an input for quantitative FT EXAFS modeling. The advantages and limitations of applying WT XAS are demonstrated (1) before and (2) after calcination to 650 °C of a Pt(acac)2 impregnated Mg(In)(Al)Ox support and (3) after subsequent H2 reduction to 650 °C. Combined XANES, FT, and WT XAS analysis shows that the acac ligands of the Pt precursor decompose during calcination, leading to atomically dispersed Pt(4+) cations on the Mg(In)(Al)Ox support. H2 reduction treatment eventually results in the formation of 1.5 nm Pt-In alloyed nanoparticles. Widespread use and systematic application of wavelet-based XAS can potentially reveal in greater detail the intricate mechanisms involved in catalysis, chemistry, and related fields.

15.
Materials (Basel) ; 8(4): 1652-1665, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-28788023

ABSTRACT

Mesoporous carbons were synthesized via both soft and hard template methods and compared to a commercial powder activated carbon (PAC) for the adsorption ability of bisphenol-A (BPA) from an aqueous solution. The commercial PAC had a BET-surface of 1027 m²/g with fine pores of 3 nm and less. The hard templated carbon (CMK-3) material had an even higher BET-surface of 1420 m²/g with an average pore size of 4 nm. The soft templated carbon (SMC) reached a BET-surface of 476 m²/g and a pore size of 7 nm. The maximum observed adsorption capacity (qmax) of CMK-3 was the highest with 474 mg/g, compared to 290 mg/g for PAC and 154 mg/g for SMC. The difference in adsorption capacities was attributed to the specific surface area and hydrophobicity of the adsorbent. The microporous PAC showed the slowest adsorption, while the ordered mesopores of SMC and CMK-3 enhanced the BPA diffusion into the adsorbent. This difference in adsorption kinetics is caused by the increase in pore diameter. However, CMK-3 with an open geometry consisting of interlinked nanorods allows for even faster intraparticle diffusion.

16.
Phys Chem Chem Phys ; 11(16): 2964-75, 2009 Apr 28.
Article in English | MEDLINE | ID: mdl-19421511

ABSTRACT

Nanocrystalline tungstate-exchanged layered double hydroxides of the takovite type, [Ni(x)Al(1-x)(OH)(2)](NO(3))(0.9-x)(WO(4))(0.05).mH(2)O, have been prepared with changing values of x. The morphology-texture parameters of the synthesized materials were characterized by using scanning electron microscopy and nitrogen adsorption techniques. X-Ray diffraction, diffuse reflectance spectroscopy, (27)Al MAS NMR and infrared spectroscopy were applied to study the structure and the phase purity of the tungstate exchanged materials. Identification of the tungsten state was attempted by infrared and Raman spectroscopy. The catalytic properties of the pure tungstate exchanged takovites were tested in the bromide-assisted epoxidation of terpenic olefins using H(2)O(2) as environmental benign oxidant. The bromide-assisted oxidation shows very interesting chemo-selectivity for various substrates with unique regio- and stereo-selectivity often opposite to that of many traditional methods. The activity of the tungstate catalyst was observed to highly depend on the Al content in the takovite support, most likely due to efficient charge shielding at the catalyst's surface. Tungstate exchanged on Al-rich takovite has a remarkable oxidation activity in terms of turnover frequency. Moreover, the takovite catalyst was found to be stable under reaction conditions and recyclable.

17.
Phys Chem Chem Phys ; 9(39): 5382-6, 2007 Oct 21.
Article in English | MEDLINE | ID: mdl-17914476

ABSTRACT

In this contribution, the formation and immobilisation of chromium(iii) hydroxyoxide colloids is investigated. Nano-sized Cr(iii) colloids are generated in situ upon reduction of Cr(vi), dosed to a stirred reactor. The growth of the elementary colloids by the consumption of solved Cr is kinetically unfavorable compared to their aggregation to larger secondary particles, the size of which depends on the concentration of the building block colloids. This aggregation process can be steered by simple process parameters such as dosing rate and concentration of the Cr(vi). The Cr(iii) colloids are immobilised in situ on a support material via precipitation chromatography. Upon drying, the initially amorphose hydroxyoxides are gradually transformed into crystalline Cr(2)O(3) nanoparticles, mainly located at the external surface of the support. This approach opens new opportunities for the synthesis of supported metal oxide catalysts.

18.
Chemistry ; 12(28): 7353-63, 2006 Sep 25.
Article in English | MEDLINE | ID: mdl-16881030

ABSTRACT

An optimized procedure was designed for the preparation of the microporous metal-organic framework (MOF) [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). The crystalline material was characterized by X-ray diffraction, optical microscopy, SEM, X-ray photoelectron spectroscopy, N2 sorption, thermogravimetry, and IR spectroscopy of adsorbed CO. CO adsorbs on a small number of Cu2O impurities, and particularly on the free CuII coordination sites in the framework. [Cu3(btc)2] is a highly selective Lewis acid catalyst for the isomerization of terpene derivatives, such as the rearrangement of alpha-pinene oxide to campholenic aldehyde and the cyclization of citronellal to isopulegol. By using the ethylene ketal of 2-bromopropiophenone as a test substrate, it was demonstrated that the active sites in [Cu3(btc)2] are hard Lewis acids. Catalyst stability, re-usability, and heterogeneity are critically assessed.

SELECTION OF CITATIONS
SEARCH DETAIL
...