Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Hum Reprod ; 39(3): 486-495, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38227814

ABSTRACT

STUDY QUESTION: What is the contamination rate by cancer cells and spermatogonia numbers in immature testicular tissue (ITT) harvested before the start of gonadotoxic therapy in boys with a hematological malignancy? SUMMARY ANSWER: Among our cohort of boys diagnosed with acute lymphoblastic leukemia (ALL) and lymphomas, 39% (n = 11/28) had cancer cells identified in their tissues at the time of diagnosis and all patients appeared to have reduced spermatogonia numbers compared to healthy reference cohorts. WHAT IS KNOWN ALREADY: Young boys affected by a hematological cancer are at risk of contamination of their testes by cancer cells but histological examination is unable to detect the presence of only a few cancer cells, which would preclude autotransplantation of cryobanked ITT for fertility restoration, and more sensitive detection techniques are thus required. Reduced numbers of spermatogonia in ITT in hematological cancer patients have been suggested based on results in a limited number of patients. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study included 54 pre- and peri-pubertal boys who were diagnosed with a hematological malignancy and who underwent a testicular biopsy for fertility preservation at the time of diagnosis before any gonadotoxic therapy between 2005 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: Among the 54 patients eligible in our database, formalin-fixed paraffin-embedded (FFPE) testicular tissue was available for 28 boys diagnosed either with ALL (n = 14) or lymphoma (n = 14) and was used to evaluate malignant cell contamination. Hematoxylin and eosin (H&E) staining was performed for each patient to search for cancer cells in the tissue. Markers specific to each patient's disease were identified at the time of diagnosis on the biopsy of the primary tumor or bone marrow aspiration and an immunohistochemistry (IHC) was performed on the FFPE ITT for each patient to evidence his disease markers. PCR analyses on the FFPE tissue were also conducted when a specific gene rearrangement was available. MAIN RESULTS AND THE ROLE OF CHANCE: The mean age at diagnosis and ITT biopsy of the 28 boys was 7.5 years (age range: 19 months-16 years old). Examination of ITT of the 28 boys on H&E stained sections did not detect malignant cells. Using IHC, we found contamination by cancerous cells using markers specific to the patient's disease in 10 of 28 boys, with a higher rate in patients diagnosed with ALL (57%, n = 8/14) compared with lymphoma (14%, n = 2/14) (P-value < 0.05). PCR showed contamination in three of 15 patients who had specific rearrangements identified on their bone marrow at the time of diagnosis; one of these patients had negative results from the IHC. Compared to age-related reference values of the number of spermatogonia per ST (seminiferous tubule) (Spg/ST) throughout prepuberty of healthy patients from a simulated control cohort, mean spermatogonial numbers appeared to be decreased in all age groups (0-4 years: 1.49 ± 0.54, 4-7 years: 1.08 ± 0.43, 7-11 years: 1.56 ± 0.65, 11-14 years: 3.37, 14-16 years: 5.44 ± 3.14). However, using a cohort independent method based on the Z-score, a decrease in spermatogonia numbers was not confirmed. LIMITATIONS, REASONS FOR CAUTION: The results obtained from the biopsy fragments that were evaluated for contamination by cancer cells may not be representative of the entire cryostored ITT and tumor foci may still be present outside of the biopsy range. WIDER IMPLICATIONS OF THE FINDINGS: ITT from boys diagnosed with a hematological malignancy could bear the risk for cancer cell reseeding in case of autotransplantation of the tissue. Such a high level of cancer cell contamination opens the debate of harvesting the tissue after one or two rounds of chemotherapy. However, as the safety of germ cells can be compromised by gonadotoxic treatments, this strategy warrants for the development of adapted fertility restoration protocols. Finally, the impact of the hematological cancer on spermatogonia numbers should be further explored. STUDY FUNDING/COMPETING INTEREST(S): The project was funded by a grant from the FNRS-Télévie (grant n°. 7.4533.20) and Fondation Contre le Cancer/Foundation Against Cancer (2020-121) for the research project on fertility restoration with testicular tissue from hemato-oncological boys. The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Hematologic Neoplasms , Lymphoma , Male , Humans , Infant , Infant, Newborn , Child, Preschool , Transplantation, Autologous , Spermatogonia , Retrospective Studies , Hematologic Neoplasms/therapy
2.
Front Physiol ; 13: 884122, 2022.
Article in English | MEDLINE | ID: mdl-35721544

ABSTRACT

Background: In vitro maturation of immature testicular tissue (ITT) cryopreserved for fertility preservation is a promising fertility restoration strategy. Organotypic tissue culture proved successful in mice, leading to live births. In larger mammals, including humans, efficiently reproducing spermatogenesis ex vivo remains challenging. With advances in biomaterials technology, culture systems are becoming more complex to better mimic in vivo conditions. Along with improving culture media components, optimizing physical culture conditions (e.g., tissue perfusion, oxygen diffusion) also needs to be considered. Recent studies in mice showed that by using silicone-based hybrid culture systems, the efficiency of spermatogenesis can be improved. Such systems have not been reported for ITT of large mammals. Methods: Four different organotypic tissue culture systems were compared: static i.e., polytetrafluoroethylene membrane inserts (OT), agarose gel (AG) and agarose gel with polydimethylsiloxane chamber (AGPC), and dynamic i.e., microfluidic (MF). OT served as control. Porcine ITT fragments were cultured over a 30-day period using a single culture medium. Analyses were performed at days (d) 0, 5, 10, 20 and 30. Seminiferous tubule (ST) integrity, diameters, and tissue core integrity were evaluated on histology. Immunohistochemistry was used to identify germ cells (PGP9.5, VASA, SYCP3, CREM), somatic cells (SOX9, INSL3) and proliferating cells (Ki67), and to assess oxidative stress (MDA) and apoptosis (C-Caspase3). Testosterone was measured in supernatants using ELISA. Results: ITT fragments survived and grew in all systems. ST diameters, and Sertoli cell (SOX9) numbers increased, meiotic (SYCP3) and post-meiotic (CREM) germ cells were generated, and testosterone was secreted. When compared to control (OT), significantly larger STs (d10 through d30), better tissue core integrity (d5 through d20), higher numbers of undifferentiated spermatogonia (d30), meiotic and post-meiotic germ cells (SYCP3: d20 and 30, CREM: d20) were observed in the AGPC system. Apoptosis, lipid peroxidation (MDA), ST integrity, proliferating germ cell (Ki67/VASA) numbers, Leydig cell (INSL3) numbers and testosterone levels were not significantly different between systems. Conclusions: Using a modified culture system (AGPC), germ cell survival and the efficiency of porcine germ cell differentiation were moderately improved ex vivo. We assume that further optimization can be obtained with concomitant modifications in culture media components.

3.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071329

ABSTRACT

Avascular transplantation of frozen-thawed testicular tissue fragments represents a potential future technique for fertility restoration in boys with cancer. A significant loss of spermatogonia was observed in xeno-transplants of human tissue most likely due to the hypoxic period before revascularization. To reduce the effect of hypoxia-reoxygenation injuries, several options have already been explored, like encapsulation in alginate hydrogel and supplementation with nanoparticles delivering a necrosis inhibitor (NECINH) or VEGF. While these approaches improved short-term (5 days) vascular surfaces in grafts, neovessels were not maintained up to 21 days; i.e., the time needed for achieving vessel stabilization. To better support tissue grafts, nanoparticles loaded with VEGF, PDGF and NECINH were developed. Testicular tissue fragments from 4-5-week-old mice were encapsulated in calcium-alginate hydrogels, either non-supplemented (control) or supplemented with drug-loaded nanoparticles (VEGF-nanoparticles; VEGF-nanoparticles + PDGF-nanoparticles; NECINH-nanoparticles; VEGF-nanoparticles + NECINH-nanoparticles; and VEGF-nanoparticles + PDGF-nanoparticles + NECINH-nanoparticles) before auto-transplantation. Grafts were recovered after 5 or 21 days for analyses of tissue integrity (hematoxylin-eosin staining), spermatogonial survival (immuno-histo-chemistry for promyelocytic leukemia zinc finger) and vascularization (immuno-histo-chemistry for α-smooth muscle actin and CD-31). Our results showed that a combination of VEGF and PDGF nanoparticles increased vascular maturity and induced a faster maturation of vascular structures in grafts.


Subject(s)
Hydrogels/chemistry , Nanoparticles/administration & dosage , Neovascularization, Physiologic/drug effects , Platelet-Derived Growth Factor/administration & dosage , Testis/transplantation , Vascular Endothelial Growth Factor A/administration & dosage , Alginates/chemistry , Animals , Drug Liberation , Fertility Preservation/methods , Humans , Male , Mice, Inbred Strains , Nanoparticles/chemistry , Platelet-Derived Growth Factor/chemistry , Platelet-Derived Growth Factor/pharmacokinetics , Spermatogonia/drug effects , Testis/blood supply , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/pharmacokinetics
4.
Hum Reprod Update ; 27(3): 433-459, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33326572

ABSTRACT

BACKGROUND: Childhood cancer incidence and survivorship are both on the rise. However, many lifesaving treatments threaten the prepubertal testis. Cryopreservation of immature testicular tissue (ITT), containing spermatogonial stem cells (SSCs), as a fertility preservation (FP) option for this population is increasingly proposed worldwide. Recent achievements notably the birth of non-human primate (NHP) progeny using sperm developed in frozen-thawed ITT autografts has given proof of principle of the reproductive potential of banked ITT. Outlining the current state of the art on FP for prepubertal boys is crucial as some of the boys who have cryopreserved ITT since the early 2000s are now in their reproductive age and are already seeking answers with regards to their fertility. OBJECTIVE AND RATIONALE: In the light of past decade achievements and observations, this review aims to provide insight into relevant questions for clinicians involved in FP programmes. Have the indications for FP for prepubertal boys changed over time? What is key for patient counselling and ITT sampling based on the latest achievements in animals and research performed with human ITT? How far are we from clinical application of methods to restore reproductive capacity with cryostored ITT? SEARCH METHODS: An extensive search for articles published in English or French since January 2010 to June 2020 using keywords relevant to the topic of FP for prepubertal boys was made in the MEDLINE database through PubMed. Original articles on fertility preservation with emphasis on those involving prepubertal testicular tissue, as well as comprehensive and systematic reviews were included. Papers with redundancy of information or with an absence of a relevant link for future clinical application were excluded. Papers on alternative sources of stem cells besides SSCs were excluded. OUTCOMES: Preliminary follow-up data indicate that around 27% of boys who have undergone testicular sampling as an FP measure have proved azoospermic and must therefore solely rely on their cryostored ITT to ensure biologic parenthood. Auto-transplantation of ITT appears to be the first technique that could enter pilot clinical trials but should be restricted to tissue free of malignant cells. While in vitro spermatogenesis circumvents the risk linked to cancer cell contamination and has led to offspring in mice, complete spermatogenesis has not been achieved with human ITT. However, generation of haploid germ cells paves the way to further studies aimed at completing the final maturation of germ cells and increasing the efficiency of the processes. WIDER IMPLICATIONS: Despite all the research done to date, FP for prepubertal boys remains a relatively young field and is often challenging to healthcare providers, patients and parents. As cryopreservation of ITT is now likely to expand further, it is important not only to acknowledge some of the research questions raised on the topic, e.g. the epigenetic and genetic integrity of gametes derived from strategies to restore fertility with banked ITT but also to provide healthcare professionals worldwide with updated knowledge to launch proper multicollaborative care pathways in the field and address clinical issues that will come-up when aiming for the child's best interest.


Subject(s)
Fertility Preservation , Animals , Child , Cryopreservation/methods , Fertility Preservation/methods , Humans , Male , Mice , Spermatogenesis , Spermatozoa , Testis
5.
Int J Mol Sci ; 20(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31757040

ABSTRACT

Fertility preservation for prepubertal boys relies exclusively on cryopreservation of immature testicular tissue (ITT) containing spermatogonia as the only cells with reproductive potential. Preclinical studies that used a nude mice model to evaluate the development of human transplanted ITT were characterized by important spermatogonial loss. We hypothesized that the encapsulation of testicular tissue in an alginate matrix supplemented with nanoparticles containing a necrosis inhibitor (NECINH-NPS) would improve tissue integrity and germ cells' survival in grafts. We performed orthotopic autotransplantation of 1 mm³ testicular tissue fragments recovered form mice (aged 4-5 weeks). Fragments were either non-encapsulated, encapsulated in an alginate matrix, or encapsulated in an alginate matrix containing NECINH-NPs. Grafts were recovered 5- and 21-days post-transplantation. We evaluated tissue integrity (hematoxylin-eosin staining), germ cells survival (immunohistochemistry for promyelocytic leukemia zinc-finger, VASA, and protein-boule-like), apoptosis (immunohistochemistry for active-caspase 3), and lipid peroxidation (immunohistochemistry for malondialdehyde). NECINH-NPs significantly improved testicular tissue integrity and germ cells' survival after 21 days. Oxidative stress was reduced after 5 days, regardless of nanoparticle incorporation. No effect on caspase-dependent apoptosis was observed. In conclusion, NECINH-NPs in an alginate matrix significantly improved tissue integrity and germ cells' survival in grafts with the perspective of higher reproductive outcomes.


Subject(s)
Fertility Preservation/methods , Nanoparticles/chemistry , Spermatogonia/drug effects , Tumor Necrosis Factor Inhibitors/pharmacology , Alginates/chemistry , Animals , Apoptosis , Cell Survival , Lipid Peroxidation , Male , Mice , Spermatogonia/metabolism , Spermatogonia/transplantation , Testis/cytology , Testis/drug effects , Testis/transplantation , Tumor Necrosis Factor Inhibitors/administration & dosage
6.
Int J Mol Sci ; 20(21)2019 Nov 03.
Article in English | MEDLINE | ID: mdl-31684200

ABSTRACT

Cryopreservation of immature testicular tissue (ITT) prior to chemo/radiotherapy is now ethically accepted and is currently the only way to preserve fertility of prepubertal boys about to undergo cancer therapies. So far, three-dimensional culture of testicular cells isolated from prepubertal human testicular tissue was neither efficient nor reproducible to obtain mature spermatozoa, and ITT transplantation is not a safe option when there is a risk of cancer cell contamination of the testis. Hence, generation of testicular organoids (TOs) after cell selection is a novel strategy aimed at restoring fertility in these patients. Here, we created TOs using hydrogels developed from decellularized porcine ITT and compared cell numbers, organization and function to TOs generated in collagen only hydrogel. Organotypic culture of porcine ITT was used as a control. Rheological and mass spectrometry analyses of both hydrogels highlighted differences in terms of extracellular matrix stiffness and composition, respectively. Sertoli cells (SCs) and germ cells (GCs) assembled into seminiferous tubule-like structures delimited by a basement membrane while Leydig cells (LCs) and peritubular cells localized outside. TOs were maintained for 45 days in culture and secreted stem cell factor and testosterone demonstrating functionality of SCs and LCs, respectively. In both TOs GC numbers decreased and SC numbers increased. However, LC numbers decreased significantly in the collagen hydrogel TOs (p < 0.05) suggesting a better preservation of growth factors within TOs developed from decellularized ITT and thus a better potential to restore the reproductive capacity.


Subject(s)
Cryopreservation/methods , Extracellular Matrix/metabolism , Fertility Preservation/methods , Hydrogels/metabolism , Organoids/cytology , Testis/cytology , Animals , Cell Proliferation , Humans , Leydig Cells/cytology , Leydig Cells/metabolism , Male , Organ Culture Techniques , Organoids/metabolism , Seminiferous Tubules/cytology , Sertoli Cells/cytology , Sertoli Cells/metabolism , Solubility , Spermatogonia/cytology , Stem Cell Factor/metabolism , Swine , Testosterone/metabolism
7.
Front Physiol ; 9: 1413, 2018.
Article in English | MEDLINE | ID: mdl-30356879

ABSTRACT

While in mice various studies have described the completion of spermatogenesis in vitro using either organotypic culture of prepubertal testicular tissue or 3D culture of isolated cells, in humans it has not been possible to achieve germ cell differentiation from immature testicular tissue (ITT). In our study, we evaluated the ability of human ITT to differentiate via a long-term organotypic culture of frozen-thawed 1 mm3 testicular fragments from five prepubertal boys in two different culture media. Tissue and supernatants were analyzed at regular intervals up to day 139. Sertoli cell (SC) viability and maturation was evaluated using immunohistochemistry (IHC) for SOX9, GDNF, anti-Mullerian hormone (AMH) and androgen receptor (AR), and AMH concentration in supernatants. Spermatogonia (SG) and proliferating cells were identified by MAGE-A4 (for SG) and Ki67 (for proliferating cells) via immunohistochemistry (IHC). Apoptotic cells were studied by active caspase 3. To evaluate Leydig cell (LC) functionality testosterone was measured in the supernatants and steroidogenic acute regulatory protein (STAR) IHC was performed. Germ cell differentiation was evaluated on Hematoxylin-Eosin histological sections, via IHC for synaptonemal complex 3 (SYCP3) for spermatocytes, Protein boule-like (BOLL) for spermatocytes and round spermatids, angiotensin-converting enzyme (ACE), protamine 2 and transition protein 1 (for elongated spermatids) and via chromogenic in situ hybridization (CISH). We reported the generation of meiotic and postmeiotic cells after 16 days of culture, as shown by the histological analyses, the presence of differentiation markers and the increase of haploid germ cells. We showed SC viability and maturation by a decrease of AMH secretion in the supernatants (p ≤ 0.001) while the number of SOX9 positive cells did not show any variation. A decrease of spermatogonia (p ≤ 0.001) was observed. The number of apoptotic cells did not vary. LC functionality was shown by the increase in STAR expression (p ≤ 0.007) and a peak in testosterone secretion, followed by a reduction (p ≤ 0.001) with stabilization. According to our knowledge, this is the first report of generation of haploid cells in human ITT. Differentiating germ cells have to be further evaluated for their ability to complete differentiation, their fecundability and epigenetic characteristics.

8.
Int J Mol Sci ; 19(1)2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29329231

ABSTRACT

Cryopreservation of immature testicular tissue before chemo/radiotherapy is the only option to preserve fertility of cancer-affected prepubertal boys. To avoid reintroduction of malignant cells, development of a transplantable scaffold by decellularization of pig immature testicular tissue (ITT) able to support decontaminated testicular cells could be an option for fertility restoration in these patients. We, therefore, compared decellularization protocols to produce a cytocompatible scaffold. Fragments of ITT from 15 piglets were decellularized using three protocols: sodium dodecyl sulfate (SDS)-Triton (ST), Triton-SDS-Triton (TST) and trypsin 0.05%/ethylenediaminetetraacetic acid (EDTA) 0.02%-Triton (TET) with varying detergent concentrations. All protocols were able to lower DNA levels. Collagen retention was demonstrated in all groups except ST 1%, and a significant decrease in glycosaminoglycans was observed in the TST 1% and TET 1% groups. When Sertoli cells (SCs) were cultured with decellularized tissue, no signs of cytotoxicity were detected. A higher SC proliferation rate and greater stem cell factor secretion were observed than with SCs cultured without scaffold. ST 0.01% and TET 3% conditions offered the best compromise in terms of DNA elimination and extracellular matrix (ECM) preservation, while ensuring good attachment, proliferation and functionality of human SCs. This study demonstrates the potential of using decellularized pig ITT for human testicular tissue engineering purposes.


Subject(s)
Biocompatible Materials/pharmacology , Sertoli Cells/cytology , Testis/cytology , Tissue Scaffolds/chemistry , Adult , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , DNA/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Glycosaminoglycans/metabolism , Humans , Male , Sus scrofa
9.
Int J Mol Sci ; 19(1)2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29346308

ABSTRACT

Despite their important contribution to the cure of both oncological and benign diseases, gonadotoxic therapies present the risk of a severe impairment of fertility. Sperm cryopreservation is not an option to preserve prepubertal boys' reproductive potential, as their seminiferous tubules only contain spermatogonial stem cells (as diploid precursors of spermatozoa). Cryobanking of human immature testicular tissue (ITT) prior to gonadotoxic therapies is an accepted practice. Evaluation of cryopreserved ITT using xenotransplantation in nude mice showed the survival of a limited proportion of spermatogonia and their ability to proliferate and initiate differentiation. However, complete spermatogenesis could not be achieved in the mouse model. Loss of germ cells after ITT grafting points to the need to optimize the transplantation technique. Tissue engineering, a new branch of science that aims at improving cellular environment using scaffolds and molecules administration, might be an approach for further progress. In this review, after summarizing the lessons learned from human prepubertal testicular germ cells or tissue xenotransplantation experiments, we will focus on the benefits that might be gathered using bioengineering techniques to enhance transplantation outcomes by optimizing early tissue graft revascularization, protecting cells from toxic insults linked to ischemic injury and exploring strategies to promote cellular differentiation.


Subject(s)
Testis/cytology , Tissue Engineering , Animals , Humans , Infertility, Male/therapy , Male , Spermatogonia/cytology , Stem Cell Transplantation , Stem Cells/cytology , Testis/transplantation , Tissue Scaffolds/chemistry
11.
Stem Cell Res ; 21: 171-177, 2017 05.
Article in English | MEDLINE | ID: mdl-28174013

ABSTRACT

Fertility preservation in prepubertal boys facing gonadotoxic treatment is still at the experimental stage. Nevertheless cryopreservation of immature testicular tissue (ITT) obtained by small testicular biopsy is being increasingly proposed in reproductive care clinics for this purpose. Different approaches to in vivo or in vitro mature spermatogonial stem cells (SSCs) contained in ITT have been studied: autografting of testicular tissue pieces, transplantation of one's own purified germ cell suspensions, and in vitro maturation (IVM) for subsequent use of sperm for intra cytoplasmic sperm injection (ICSI). While complete spermatogenesis yielding fertile offspring has been achieved in a number of animal species after cell and tissue transplantation and IVM, no mature sperm has yet been obtained from human prepubertal SSCs. This review describes research conducted by our team and a number of others working on fertility restoration from SSCs, with special emphasis on debated concerns and progress made towards clinical application of different strategies.


Subject(s)
Clinical Trials as Topic , Fertility Preservation , Puberty/physiology , Spermatogonia/cytology , Stem Cells/cytology , Humans , Male , Testis/cytology , Testis/transplantation
12.
Ann Biomed Eng ; 45(7): 1770-1781, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28070774

ABSTRACT

New and improved oncological therapies are now able to cure more than 80% of cancer-affected children in Europe. However, such treatments are gonadotoxic and result in fertility issues, especially in boys who are not able to provide a sperm sample before starting chemo/radiotherapy because of their prepubertal state. For these boys, cryopreservation of immature testicular tissue (ITT) is the only available option, aiming to preserve spermatogonial stem cells (SSCs). Both slow-freezing and vitrification have been investigated to this end and are now applied in a clinical setting for SSC cryopreservation. Research now has to focus on methods that will allow fertility restoration. This review discusses different studies that have been conducted on ITT transplantation, including those using growth factor supplementation like free molecules, or tissue encapsulation with or without nanoparticles, as well as the possibility of developing a bioartificial testis that can be used for in vitro gamete production or in vivo transplantation.


Subject(s)
Cell Transplantation/methods , Cells, Immobilized/transplantation , Cryopreservation , Hydrogels/therapeutic use , Infertility, Male/prevention & control , Nanotechnology/methods , Spermatogonia/transplantation , Tissue Scaffolds , Animals , Cell Transplantation/instrumentation , Humans , Male , Puberty
13.
J Control Release ; 234: 79-89, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27189137

ABSTRACT

Transplantation of cryopreserved immature testicular tissue (ITT) is a promising strategy to restore fertility in young boys facing gonadotoxic treatments. However, up to now, limited spermatogonial recovery has been achieved in xenografting models used to evaluate the potential of cryopreserved tissue transplantation. When comparing avascular xenografts of cryopreserved and fresh human ITT into a mouse model, the number of spermatogonia was significantly reduced, regardless of the cryopreservation procedure used. To improve tissue engraftment, revascularization and hence spermatogonial survival, ITT was embedded in two types of hydrogel loaded with VEGF nanoparticles. Small pieces (±1mm(3)) of testicular tissue were grafted in NMRI mice as follows: grafted without encapsulation, grafted after encapsulation in fibrin, in alginate, in fibrin-VEGF-nanoparticle (NP) and in alginate-VEGF-NP. Non-grafted tissue served as control. After 5 and 21days of implantation, seminiferous tubule integrity, revascularization and spermatogonial recovery were evaluated by histology and immunohistochemistry. Seminiferous tubule integrity ranged from 13.3% to 39.6% and 42.7% to 68.7% on day 5 and day 21, respectively. Vascular density on day 5 was found to be higher in VEGF supplemented groups, regardless of the hydrogel used. Staining for phosphorylated VEGF receptor 2 and endothelial proliferation on day 5 was higher in all groups compared to non-grafted avascular controls. Spermatogonial recovery ranged between 14.8% and 27.3% on day 21 and was significantly higher in the alginate and alginate-VEGF-NP groups. The present study demonstrates the potential of alginate hydrogel loaded with nanoencapsulated growth factors to improve cryopreserved tissue engraftment.


Subject(s)
Alginates/chemistry , Fertility Preservation/methods , Hydrogels/chemistry , Nanoparticles/administration & dosage , Spermatogonia/drug effects , Testis/transplantation , Vascular Endothelial Growth Factor A/administration & dosage , Animals , Cell Proliferation/drug effects , Cryopreservation , Drug Liberation , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Male , Mice, Inbred Strains , Neovascularization, Physiologic/drug effects , Seminiferous Tubules/drug effects , Spermatogonia/cytology , Testis/blood supply , Testis/metabolism , Testis/pathology , Vascular Endothelial Growth Factor A/pharmacology
14.
Front Surg ; 1: 47, 2014.
Article in English | MEDLINE | ID: mdl-25593971

ABSTRACT

Controlled slow-freezing is the procedure currently applied for immature testicular tissue (ITT) cryobanking in clinical practice. Vitrification has been proposed as a promising alternative, with a view to better preserve the spermatogonial stem cells for future fertility restoration by autografting in young boys suffering from cancer. It appears that besides the potential influence of the cryopreservation technique used, the transplantation procedure itself has a significant impact on spermatogonial loss observed in ITT xenografts. Eighteen ITT pieces issued from 6 patients aged 2-15 years were used. Fragments of fresh tissue (serving as ungrafted controls), frozen-thawed tissue, frozen-thawed tissue supplemented with N-acetylcysteine (NAC), and frozen-thawed tissue supplemented with testosterone xenografted to nude mice for 5 days were compared. Upon graft removal, histological and immunohistochemical analyses were performed to evaluate spermatogonia, intratubular proliferation, and intrinsic and extrinsic apoptosis. A significant decrease in the integrity of intact seminiferous tubules was found in all three grafted groups. Spermatogonia were observed by immunohistochemistry in all grafted groups, with recovery rates of 67, 63, and 53%, respectively, for slow-frozen tissue, slow-frozen tissue supplemented with NAC, and slow-frozen tissue supplemented with testosterone. Apoptosis evidenced by active caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was similar in all grafts. The study is limited by the low availability of ITT samples of human origin, and no clear impact of graft supplementation was found. The mouse xenotransplantation model needs to be refined to investigate human spermatogenesis in human ITT grafts.

15.
Hum Reprod ; 28(3): 578-89, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23315062

ABSTRACT

STUDY QUESTION: Does vitrification of human immature testicular tissue (ITT) have potential benefits for future fertility preservation? Does vitrification of human ITT have potential benefits in an in vivo murine xenotransplantation model? SUMMARY ANSWER: Vitrification is able to maintain proliferation capacity in spermatogonial cells after 6 months of xenografting. WHAT IS KNOWN ALREADY: Controlled slow-freezing is the procedure currently applied for ITT cryobanking in clinical practice. Vitrification has been proposed as a promising technique for long-term storage of ITT, with a view to preserving spermatogonial stem cells (SSCs) for future fertility restoration in young boys suffering from cancer. After vitrification of ITT, in vitro survival of SSCs was demonstrated, but their functionality was not evaluated. STUDY DESIGN, SIZE, DURATION: Ten ITT pieces issuing from 10 patients aged 2-12 years were used. Fragments of fresh tissue (serving as controls) and fresh, frozen-thawed and vitrified-warmed testicular pieces xenografted to the scrotum of nude mice for 6 months were compared. MATERIALS, SETTING, METHODS: Upon graft removal, histological and immunohistochemical analyses were performed to evaluate spermatogonia (SG) (MAGE-A4), intratubular proliferation (Ki67), proliferating SG and Leydig cells (3ß-HSD). The entire piece of grafted tissue was assessed in each case. MAIN RESULTS AND THE ROLE OF CHANCE: Seminiferous tubules showed good integrity after cryopreservation and xenografting for 6 months in all three groups. Survival of SG and their ability to proliferate was observed by immunohistochemistry in all grafted groups. SG were able to initiate spermatogenesis, but blockage at the pachytene stage was observed. The recovery rate of SG was 3.4 ± 3.8, 4.1 ± 7.3 and 7.3 ± 6.3%, respectively, for fresh, slow-frozen and vitrified-warmed tissue after 6 months of xenografting. LIMITATIONS, REASONS FOR CAUTION: The study is limited by the low availability of ITT samples of human origin. The mouse xenotransplantation model needs to be refined to study human spermatogenesis. WIDER IMPLICATIONS OF THE FINDINGS: The findings of the present study have potential implications for cryobanking of ITT and fertility preservation. Spermatogonial loss recorded after fresh ITT transplantation indicates that the avascular grafting technique needs to be optimized. There are so far no convincing data justifying modification of current clinical practice for ITT storage with slow-freezing, but this study demonstrates that it is worth pursuing optimization of ITT vitrification as an alternative for preservation of SSCs. STUDY FUNDING/COMPETING INTEREST(S): The present study was supported by a grant from the Fonds National de la Recherche Scientifique de Belgique (grant Télévie N° 7. 4.572.09.F). The authors declare that there is no conflict of interest.


Subject(s)
Cryopreservation , Fertility Preservation/methods , Spermatogenesis , Spermatogonia/pathology , Tissue Preservation , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/pathology , Animals , Child , Child, Preschool , Graft Survival , Humans , Leydig Cells/metabolism , Leydig Cells/pathology , Male , Mice , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Pachytene Stage , Spermatogonia/metabolism , Testis/metabolism , Testis/pathology , Testis/transplantation , Transplantation, Heterologous , Vitrification
16.
Fertil Steril ; 95(6): 2123.e9-12, 2011 May.
Article in English | MEDLINE | ID: mdl-21300331

ABSTRACT

OBJECTIVE: To assess vitrification of prepubertal human testicular tissue in vitro. DESIGN: Case report. SETTING: Academic research unit. PATIENT(S): Two patients (6 and 12 years of age) who were to start gonadotoxic treatment for chronic granulomatous disease and acute lymphoblastic leukemia. INTERVENTION(S): Long-term (10-day) organotypic culture performed immediately after vitrification and warming. Fresh tissue and tissue cryopreserved by slow-freezing were used as control samples. MAIN OUTCOMES MEASURE(S): Spermatogonial cell survival (MAGE-A4) and proliferation (Ki67) were evaluated by immunohistochemistry (IHC) and tubular integrity by light microscopy. RESULT(S): Qualitative analysis revealed that histologic characteristics of spermatogonia and Sertoli cells were preserved, as were cell-cell cohesion and cell adhesion to the basement membrane, in vitrified tissue as well as in frozen and fresh control samples. Survival of spermatogonia and their ability to proliferate as evidenced by IHC was also confirmed in cultured fresh, slow-frozen, and vitrified tissue. CONCLUSION(S): Vitrification, having the advantage of being a faster and more convenient method, shows promise as an alternative strategy to slow-freezing in the emerging field of immature testicular tissue cryopreservation.


Subject(s)
Cryopreservation/methods , Testis , Vitrification , Cells, Cultured , Child , Feasibility Studies , Granulomatous Disease, Chronic/therapy , Humans , Infertility, Male/prevention & control , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Puberty/physiology , Semen Analysis
17.
Cardiovasc Intervent Radiol ; 31(2): 404-6, 2008.
Article in English | MEDLINE | ID: mdl-17965910

ABSTRACT

Extrarenal transplant pseudoaneurysms are rare, and treatment usually involves sacrificing of the transplant kidney. We report a case where combined use of a thrombotic agent and covered stents successfully excluded a pseudoaneurysm while preserving renal function.


Subject(s)
Aneurysm, False/therapy , Iliac Aneurysm/therapy , Kidney Transplantation , Aneurysm, False/diagnosis , Aneurysm, False/etiology , Angiography, Digital Subtraction , Combined Modality Therapy , Diagnosis, Differential , Humans , Iliac Aneurysm/diagnosis , Iliac Aneurysm/etiology , Magnetic Resonance Angiography , Male , Middle Aged , Stents , Thrombin/administration & dosage , Tomography, X-Ray Computed , Ultrasonography, Doppler, Duplex
SELECTION OF CITATIONS
SEARCH DETAIL
...