Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
iScience ; 27(2): 108898, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38322992

ABSTRACT

Myeloperoxidase (MPO) is an enzyme that functions in host defense. MPO is released into the vascular lumen by neutrophils during inflammation and may adhere and subsequently penetrate endothelial cells (ECs) coating vascular walls. We show that MPO enters the nucleus of ECs and binds chromatin independently of its enzymatic activity. MPO drives chromatin decondensation at its binding sites and enhances condensation at neighboring regions. It binds loci relevant for endothelial-to-mesenchymal transition (EndMT) and affects the migratory potential of ECs. Finally, MPO interacts with the RNA-binding factor ILF3 thereby affecting its relative abundance between cytoplasm and nucleus. This interaction leads to change in stability of ILF3-bound transcripts. MPO-knockout mice exhibit reduced number of ECs at scar sites following myocardial infarction, indicating reduced neovascularization. In summary, we describe a non-enzymatic role for MPO in coordinating EndMT and controlling the fate of endothelial cells through direct chromatin binding and association with co-factors.

2.
bioRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37873121

ABSTRACT

Polycomb Repressive Complex 2 (PRC2) is an epigenetic regulator that trimethylates lysine 27 of histone 3 (H3K27me3) and is essential for embryonic development and cellular differentiation. H3K27me3 is associated with transcriptionally repressed chromatin and is established when PRC2 is allosterically activated upon methyl-lysine binding by the regulatory subunit EED. Automethylation of the catalytic subunit EZH2 stimulates its activity by an unknown mechanism. Here, we show that PRC2 forms a dimer on chromatin in which an inactive, automethylated PRC2 protomer is the allosteric activator of a second PRC2 that is poised to methylate H3 of a substrate nucleosome. Functional assays support our model of allosteric trans-autoactivation via EED, suggesting a novel mechanism mediating context-dependent activation of PRC2. Our work showcases the molecular mechanism of auto-modification coupled dimerization in the regulation of chromatin modifying complexes.

3.
Nucleic Acids Res ; 51(18): 10011-10025, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37615563

ABSTRACT

Eukaryotic transcription is dependent on specific histone modifications. Their recognition by chromatin readers triggers complex processes relying on the coordinated association of transcription regulatory factors. Although various modification states of a particular histone residue often lead to differential outcomes, it is not entirely clear how they are discriminated. Moreover, the contribution of intrinsically disordered regions outside of the specialized reader domains to nucleosome binding remains unexplored. Here, we report the structures of a PWWP domain from transcriptional coactivator LEDGF in complex with the H3K36 di- and trimethylated nucleosome, indicating that both methylation marks are recognized by PWWP in a highly conserved manner. We identify a unique secondary interaction site for the PWWP domain at the interface between the acidic patch and nucleosomal DNA that might contribute to an H3K36-methylation independent role of LEDGF. We reveal DNA interacting motifs in the intrinsically disordered region of LEDGF that discriminate between the intra- or extranucleosomal DNA but remain dynamic in the context of dinucleosomes. The interplay between the LEDGF H3K36-methylation reader and protein binding module mediated by multivalent interactions of the intrinsically disordered linker with chromatin might help direct the elongation machinery to the vicinity of RNA polymerase II, thereby facilitating productive elongation.

4.
J Vis Exp ; (202)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38224121

ABSTRACT

Streptavidin affinity grids provide strategies to overcome many commonly encountered cryo-electron microscopy (cryo-EM) sample preparation challenges, including sample denaturation and preferential orientations that can occur due to the air-water interface. Streptavidin affinity grids, however, are currently utilized by few cryo-EM labs because they are not commercially available and require a careful fabrication process. Two-dimensional streptavidin crystals are grown onto a biotinylated lipid monolayer that is applied directly to standard holey-carbon cryo-EM grids. The high-affinity interaction between streptavidin and biotin allows for the subsequent binding of biotinylated samples that are protected from the air-water interface during cryo-EM sample preparation. Additionally, these grids provide a strategy for concentrating samples available in limited quantities and purifying protein complexes of interest directly on the grids. Here, a step-by-step, optimized protocol is provided for the robust fabrication of streptavidin affinity grids for use in cryo-EM and negative-stain experiments. Additionally, a trouble-shooting guide is included for commonly experienced challenges to make the use of streptavidin affinity grids more accessible to the larger cryo-EM community.


Subject(s)
Biotin , Carbon , Cryoelectron Microscopy/methods , Streptavidin/chemistry , Carbon/chemistry , Water
5.
Oncogene ; 41(40): 4560-4572, 2022 09.
Article in English | MEDLINE | ID: mdl-36068335

ABSTRACT

Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC-induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC-overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma.


Subject(s)
Lymphoma, B-Cell , Tubulin , Acetylation , Animals , HSP40 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Mice , Transcription Factors/metabolism , Tubulin/metabolism
6.
Front Genet ; 13: 906662, 2022.
Article in English | MEDLINE | ID: mdl-35899196

ABSTRACT

Mammalian histone demethylases of the KDM5 family are mediators of gene expression dynamics during developmental, cellular differentiation, and other nuclear processes. They belong to the large group of JmjC domain containing, 2-oxoglutarate (2-OG) dependent oxygenases and target methylated lysine 4 of histone H3 (H3K4me1/2/3), an epigenetic mark associated with active transcription. In recent years, KDM5 demethylases have gained increasing attention due to their misregulation in many cancer entities and are intensively explored as therapeutic targets. Despite these implications, the molecular basis of KDM5 function has so far remained only poorly understood. Little is known about mechanisms of nucleosome recognition, the recruitment to genomic targets, as well as the local regulation of demethylase activity. Experimental evidence suggests close physical and functional interactions with epigenetic regulators such as histone deacetylase (HDAC) containing complexes, as well as the retinoblastoma protein (RB). To understand the regulation of KDM5 proteins in the context of chromatin, these interactions have to be taken into account. Here, we review the current state of knowledge on KDM5 function, with a particular emphasis on molecular interactions and their potential implications. We will discuss and outline open questions that need to be addressed to better understand histone demethylation and potential demethylation-independent functions of KDM5s. Addressing these questions will increase our understanding of histone demethylation and allow us to develop strategies to target individual KDM5 enzymes in specific biological and disease contexts.

7.
Science ; 371(6527)2021 01 22.
Article in English | MEDLINE | ID: mdl-33479123

ABSTRACT

Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) cooperate to determine cell identity by epigenetic gene expression regulation. However, the mechanism of PRC2 recruitment by means of recognition of PRC1-mediated H2AK119ub1 remains poorly understood. Our PRC2 cryo-electron microscopy structure with cofactors JARID2 and AEBP2 bound to a H2AK119ub1-containing nucleosome reveals a bridge helix in EZH2 that connects the SET domain, H3 tail, and nucleosomal DNA. JARID2 and AEBP2 each interact with one ubiquitin and the H2A-H2B surface. JARID2 stimulates PRC2 through interactions with both the polycomb protein EED and the H2AK119-ubiquitin, whereas AEBP2 has an additional scaffolding role. The presence of these cofactors partially overcomes the inhibitory effect that H3K4me3 and H3K36me3 exert on core PRC2 (in the absence of cofactors). Our results support a key role for JARID2 and AEBP2 in the cross-talk between histone modifications and PRC2 activity.


Subject(s)
Histone Code , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/metabolism , Animals , Cryoelectron Microscopy , Gene Expression Regulation , Histones/metabolism , Humans , Nucleosomes/metabolism , PR-SET Domains , Polycomb Repressive Complex 2/chemistry , Ubiquitin/metabolism , Xenopus
8.
Elife ; 92020 11 19.
Article in English | MEDLINE | ID: mdl-33211010

ABSTRACT

Repression of genes by Polycomb requires that PRC2 modifies their chromatin by trimethylating lysine 27 on histone H3 (H3K27me3). At transcriptionally active genes, di- and tri-methylated H3K36 inhibit PRC2. Here, the cryo-EM structure of PRC2 on dinucleosomes reveals how binding of its catalytic subunit EZH2 to nucleosomal DNA orients the H3 N-terminus via an extended network of interactions to place H3K27 into the active site. Unmodified H3K36 occupies a critical position in the EZH2-DNA interface. Mutation of H3K36 to arginine or alanine inhibits H3K27 methylation by PRC2 on nucleosomes in vitro. Accordingly, Drosophila H3K36A and H3K36R mutants show reduced levels of H3K27me3 and defective Polycomb repression of HOX genes. The relay of interactions between EZH2, the nucleosomal DNA and the H3 N-terminus therefore creates the geometry that permits allosteric inhibition of PRC2 by methylated H3K36 in transcriptionally active chromatin.


Subject(s)
Drosophila Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Animals , Baculoviridae , Catalytic Domain , Cell Line , Cryoelectron Microscopy , Drosophila Proteins/genetics , Drosophila melanogaster , Gene Expression Regulation , Histone-Lysine N-Methyltransferase/genetics , Humans , Methylation , Models, Molecular , Mutation , Protein Conformation , Protein Processing, Post-Translational , Xenopus
9.
Biochemistry ; 58(5): 346-354, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30451485

ABSTRACT

Polycomb group proteins are transcriptional repressors controlling gene expression patterns and maintaining cell type identity. The chemical modifications of histones and DNA caused by the regulated activity of chromatin-modifying enzymes such as Polycomb help establish and maintain such expression patterns. Polycomb repressive complex 2 (PRC2) is the only known methyltransferase specific for histone H3 lysine 27 (H3K27) and catalyzes its trimethylation leading to the repressive H3K27me3 mark. Structural biology has made important contributions to our understanding of the molecular mechanisms that ensure the spatiotemporal regulation of PRC2 activity and the establishment of inactive chromatin domains marked by H3K27me3. In this review, we discuss the recent structural studies that have advanced our understanding of PRC2 function, in particular the roles of intersubunit interactions in complex assembly and the regulation of methyltransferase activity, as well as the mechanism of local H3K27me3 spreading leading to repressive domains.


Subject(s)
Gene Expression Regulation , Histones/metabolism , Methyltransferases/metabolism , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/metabolism , Humans , Methylation , Models, Molecular , Protein Conformation , Substrate Specificity
10.
Science ; 360(6394): 1242-1246, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29748322

ABSTRACT

Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces.


Subject(s)
Microtubules/chemistry , Models, Chemical , tau Proteins/chemistry , Conserved Sequence , Cryoelectron Microscopy , Humans , Phosphorylation , Phylogeny , Polymerization , Tandem Repeat Sequences , tau Proteins/classification
11.
Nat Struct Mol Biol ; 25(2): 154-162, 2018 02.
Article in English | MEDLINE | ID: mdl-29379173

ABSTRACT

Epigenetic regulation is mediated by protein complexes that couple recognition of chromatin marks to activity or recruitment of chromatin-modifying enzymes. Polycomb repressive complex 2 (PRC2), a gene silencer that methylates lysine 27 of histone H3, is stimulated upon recognition of its own catalytic product and has been shown to be more active on dinucleosomes than H3 tails or single nucleosomes. These properties probably facilitate local H3K27me2/3 spreading, causing heterochromatin formation and gene repression. Here, cryo-EM reconstructions of human PRC2 bound to bifunctional dinucleosomes show how a single PRC2, via interactions with nucleosomal DNA, positions the H3 tails of the activating and substrate nucleosome to interact with the EED subunit and the SET domain of EZH2, respectively. We show how the geometry of the PRC2-DNA interactions allows PRC2 to accommodate varying lengths of the linker DNA between nucleosomes. Our structures illustrate how an epigenetic regulator engages with a complex chromatin substrate.


Subject(s)
Cryoelectron Microscopy , Nucleosomes/chemistry , Polycomb Repressive Complex 2/chemistry , Chromatin/chemistry , Cross-Linking Reagents/chemistry , Crystallography, X-Ray , DNA/chemistry , Enhancer of Zeste Homolog 2 Protein/chemistry , Epigenesis, Genetic , Gene Silencing , Histones/chemistry , Humans , Lysine/chemistry , Models, Molecular , Neoplasm Proteins , Protein Binding , Protein Domains , Recombinant Proteins/chemistry , Repressor Proteins/chemistry , Retinoblastoma-Binding Protein 4/chemistry , Transcription Factors
12.
Science ; 359(6378): 940-944, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29348366

ABSTRACT

Transcriptionally repressive histone H3 lysine 27 methylation by Polycomb repressive complex 2 (PRC2) is essential for cellular differentiation and development. Here we report cryo-electron microscopy structures of human PRC2 in a basal state and two distinct active states while in complex with its cofactors JARID2 and AEBP2. Both cofactors mimic the binding of histone H3 tails. JARID2, methylated by PRC2, mimics a methylated H3 tail to stimulate PRC2 activity, whereas AEBP2 interacts with the RBAP48 subunit, mimicking an unmodified H3 tail. SUZ12 interacts with all other subunits within the assembly and thus contributes to the stability of the complex. Our analysis defines the complete architecture of a functionally relevant PRC2 and provides a structural framework to understand its regulation by cofactors, histone tails, and RNA.


Subject(s)
Polycomb Repressive Complex 2/chemistry , Repressor Proteins/chemistry , Cryoelectron Microscopy , Histones/chemistry , Humans , Methylation , Polycomb Repressive Complex 2/ultrastructure , Protein Binding , Protein Conformation , Repressor Proteins/ultrastructure
13.
Nat Chem Biol ; 11(11): 862-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26436840

ABSTRACT

Excessive aggregation of proteins has a major impact on cell fate and is a hallmark of amyloid diseases in humans. To resolve insoluble deposits and to maintain protein homeostasis, all cells use dedicated protein disaggregation, protein folding and protein degradation factors. Despite intense recent research, the underlying mechanisms controlling this key metabolic event are not well understood. Here, we analyzed how a single factor, the highly conserved serine protease HTRA1, degrades amyloid fibrils in an ATP-independent manner. This PDZ protease solubilizes protein fibrils and disintegrates the fibrillar core structure, allowing productive interaction of aggregated polypeptides with the active site for rapid degradation. The aggregate burden in a cellular model of cytoplasmic tau aggregation is thus reduced. Mechanistic aspects of ATP-independent proteolysis and its implications in amyloid diseases are discussed.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Peptide Fragments/chemistry , Recombinant Fusion Proteins/chemistry , Serine Endopeptidases/chemistry , tau Proteins/chemistry , Amyloid/genetics , Amyloid beta-Peptides/genetics , Biological Transport , Gene Expression , HEK293 Cells , High-Temperature Requirement A Serine Peptidase 1 , Humans , PDZ Domains , Peptide Fragments/genetics , Protein Aggregates , Protein Conformation , Proteolysis , Recombinant Fusion Proteins/genetics , Serine Endopeptidases/genetics , tau Proteins/genetics
14.
Nat Struct Mol Biol ; 17(7): 837-43, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20581826

ABSTRACT

Channeling of misfolded proteins into repair, assembly or degradation pathways is often mediated by complex and multifunctional cellular factors. Despite detailed structural information, the underlying regulatory mechanisms governing these factors are not well understood. The extracytoplasmic heat-shock factor DegP (HtrA) is a well-suited model for addressing mechanistic issues, as it is regulated by the common mechanisms of allostery and activation by oligomerization. Site-directed mutagenesis combined with refolding and oligomerization studies of chemically denatured DegP revealed how substrates trigger the conversion of the resting conformation into the active conformation. Binding of specific peptides to PDZ domain-1 causes a local rearrangement that is allosterically transmitted to the substrate-binding pocket of the protease domain. This activated state readily assembles into larger oligomeric particles, thus stabilizing the catalytically active form and providing a degradation cavity for protein substrates. The implications of these data for the mechanism of protein quality control are discussed.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Periplasmic Proteins/chemistry , Periplasmic Proteins/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Amino Acid Sequence , Bacteria/genetics , Bacterial Proteins/genetics , Catalytic Domain , Heat-Shock Proteins/genetics , Models, Molecular , PDZ Domains , Peptides/chemistry , Peptides/metabolism , Periplasmic Proteins/genetics , Point Mutation , Protein Binding , Protein Folding , Protein Multimerization , Serine Endopeptidases/genetics
15.
Res Microbiol ; 160(9): 660-6, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19695325

ABSTRACT

Two members of the widely conserved HtrA family of serine proteases, DegP and DegS, are key players in extracytoplasmic protein quality control. The underlying mechanisms of their main functions in stress sensing, regulation and protection during the unfolded protein response are discussed.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Periplasmic Proteins/chemistry , Periplasmic Proteins/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...