Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Braz. j. biol ; 77(3): 558-565, July-Sept. 2017. tab
Article in English | LILACS | ID: biblio-888796

ABSTRACT

Abstract In response to growing worldwide market demand, intensive shrimp farming, based on high feed, has developed over the past decade. The nitrogenous compounds mainly generated by animal excretion can cause deterioration of water quality and produce chronic or even acute toxicity to aquatic animals. As prevention, theoretical safety levels have been estimated from acute toxicity tests and they are traditionally used to prevent toxic effects on biota. However, are those concentrations of nitrogenous compounds really safe to Farfantepenaeus paulensis? The current study aimed to investigate the lethal and sublethal effects of ammonia, nitrite and nitrate to juvenile F. paulensis based on safety levels. Each experiment was performed independently in 100 L tanks for 30 days. The survival rates and wet weight of all shrimps were recorded every 10 days. The concentrations tested for ammonia, nitrite and nitrate were respectively: treatment "T1/4", a quarter of the safety level (0.91 mg/L TA-N, 2.55 mg/L NO2--N and 80.7 mg/L NO3--N); treatment "TSL", the safety level (3.65 mg/L TA-N, 10.2 mg/L NO2--N and 323 mg/L NO3--N); and treatment "T2X", twice the safety level (7.30 mg/L TA-N, 20.4 mg/L NO2--N and 646 mg/L NO3--N). For F. paulensis cultivation, the real safety level for nitrite was estimated to be 2.55 mg/L NO2--N. For ammonia and nitrate, the recommended concentrations were <0.91 mg/L TA-N corresponding to 0.045 mg/L NH3-N and <80.7 mg/L NO3--N, respectively.


Resumo Em resposta à crescente demanda do mercado mundial, a carcinicultura intensiva tem se desenvolvido ao longo da última década. Os compostos nitrogenados gerados principalmente pela excreção dos animais podem causar a deterioração da qualidade da água e produzir toxicidade crônica ou mesmo aguda para os animais cultivados. Como prevenção, os níveis de segurança teóricos são estimados a partir de testes de toxicidade aguda e são tradicionalmente usados para evitar efeitos tóxicos sobre a biota. No entanto, as estimativas das concentrações dos compostos nitrogenados são realmente seguras para Farfantepenaeus paulensis? O presente estudo teve como objetivo investigar os efeitos letais e subletais da amônia, nitrito e nitrato em juvenis de camarão marinho F. paulensis com base em níveis de segurança. Cada experimento foi realizado de forma independente em tanques com capacidade de 100 L durante 30 dias. As taxas de sobrevivência e peso úmido de todos os camarões foram registrados a cada 10 dias. As concentrações testadas para amônia, nitrito e nitrato foram respectivamente: "T1/4", um quarto do nível de segurança (0,91 mg/L N-AT, 2,55 mg/L de N-NO2- e 80,7 mg/L N-NO3-); "TSL", nível de segurança (3,65 mg/L N-AT, 10,2 mg/L de N-NO2- e 323 mg/L N-NO3-); e "T2X", duas vezes o nível de segurança (7,30 mg/L N-AT, 20,4 mg/L de N-NO2- e 646 mg/L de N-NO3-). Para a criação de F. paulensis, o nível de segurança real para nitrito foi estimado em 2,55 mg/L N-NO2-. Para amônia e nitrato, concentrações recomendadas foram: <0,91 mg/L N-AT correspondente a 0,045 mg/L N-NH3 e <80,7 mg/L N-NO3-, respectivamente.


Subject(s)
Animals , Penaeidae/drug effects , Ammonia/toxicity , Nitrates/toxicity , Nitrites/toxicity , Aquaculture , Penaeidae/growth & development , Penaeidae/physiology , Toxicity Tests, Chronic/veterinary , Longevity
2.
Braz J Biol ; 77(3): 558-565, 2017.
Article in English | MEDLINE | ID: mdl-27783762

ABSTRACT

In response to growing worldwide market demand, intensive shrimp farming, based on high feed, has developed over the past decade. The nitrogenous compounds mainly generated by animal excretion can cause deterioration of water quality and produce chronic or even acute toxicity to aquatic animals. As prevention, theoretical safety levels have been estimated from acute toxicity tests and they are traditionally used to prevent toxic effects on biota. However, are those concentrations of nitrogenous compounds really safe to Farfantepenaeus paulensis? The current study aimed to investigate the lethal and sublethal effects of ammonia, nitrite and nitrate to juvenile F. paulensis based on safety levels. Each experiment was performed independently in 100 L tanks for 30 days. The survival rates and wet weight of all shrimps were recorded every 10 days. The concentrations tested for ammonia, nitrite and nitrate were respectively: treatment "T1/4", a quarter of the safety level (0.91 mg/L TA-N, 2.55 mg/L NO2--N and 80.7 mg/L NO3--N); treatment "TSL", the safety level (3.65 mg/L TA-N, 10.2 mg/L NO2--N and 323 mg/L NO3--N); and treatment "T2X", twice the safety level (7.30 mg/L TA-N, 20.4 mg/L NO2--N and 646 mg/L NO3--N). For F. paulensis cultivation, the real safety level for nitrite was estimated to be 2.55 mg/L NO2--N. For ammonia and nitrate, the recommended concentrations were <0.91 mg/L TA-N corresponding to 0.045 mg/L NH3-N and <80.7 mg/L NO3--N, respectively.


Subject(s)
Ammonia/toxicity , Nitrates/toxicity , Nitrites/toxicity , Penaeidae/drug effects , Animals , Aquaculture , Longevity , Penaeidae/growth & development , Penaeidae/physiology , Toxicity Tests, Chronic/veterinary
3.
Braz J Biol ; 75(1): 8-12, 2015.
Article in English | MEDLINE | ID: mdl-25945615

ABSTRACT

The aim of this study was to determine the lethal salinity (LC50) for the yellow clam Mesodesma mactroides (Bivalvia: Mesodesmatidae) and identify histopathological alterations that could be used to diagnose structural changes in clam tissue. Clams in two size classes (adults and juveniles) were placed in 10 L chambers and exposed to salinities of 35, 30, 25, 20, 15, 10, and 5 g/L. There were triplicate chambers with seven clams each for each salinity. The LC50 values for a 48 h exposure were 6.5 g/L and 5.7 g/L for adults and juveniles, respectively. For a 96 h exposure, the LC50 values were 10.5 g/L for adults and 8.8 g/L for juveniles. The histological examination of yellow clams exposed to 10 g/L for 96 h showed intercellular oedema and necrotic foci in the epithelium of the digestive gland and occlusion of the lumen of the digestive gland. In conclusion, M. mactroides can be characterised as a moderately euryhaline species, tolerating salinities from 35 to 15 g/L.


Subject(s)
Bivalvia , Salinity , Animals , Lethal Dose 50 , Time Factors
5.
An Acad Bras Cienc ; 64(4): 383-9, 1992 Dec.
Article in Portuguese | MEDLINE | ID: mdl-1295382

ABSTRACT

Larval shrimp Penaeus paulensis showed a tendency to decrease in ammonia tolerance as the larva metamorphosed from nauplius to postlarvae stage. The 24-h LC50 were 4.04, 1.70, 2.72, and 1.42 mg/l NH3-N on nauplii, zoea, mysis and postlarvae, respectively. The zoea stage and the initial postlarvae substages were very susceptible to ammonia. The 96-h LC50 values on zoea and postlarvae were 0.69 mg/l and 0.32 mg/l, against 0.80 mg/l NH3-N on mysis. The eggs of Penaeus paulensis were very affected by ammonia, which provoked a progressive decrease in the hatching rate and induced morphological deformities in hatched nauplii. A "safe level" of ammonia was estimated at 0.032 mg/l NH3-N on the basis of 24-h LC50 for eggs.


Subject(s)
Ammonia/toxicity , Penaeidae/drug effects , Animals , Brazil , Hydrogen-Ion Concentration , Larva/drug effects , Penaeidae/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...