Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38096217

ABSTRACT

The genus Acacia is a large group of woody legumes containing an enormous amount of morphological diversity in leaf shape. This diversity is at least in part the result of an innovation in leaf development where many Acacia species are capable of developing leaves of both bifacial and unifacial morphologies. While not unique in the plant kingdom, unifaciality is most commonly associated with monocots, and its developmental genetic mechanisms have yet to be explored beyond this group. In this study, we identify an accession of Acacia crassicarpa with high regeneration rates and isolate a clone for genome sequencing. We generate a chromosome-level assembly of this readily transformable clone, and using comparative analyses, confirm a whole-genome duplication unique to Caesalpinoid legumes. This resource will be important for future work examining genome evolution in legumes and the unique developmental genetic mechanisms underlying unifacial morphogenesis in Acacia.


Subject(s)
Acacia , Animals , Acacia/genetics , Comb and Wattles , Base Sequence , Chromosomes
2.
Curr Opin Plant Biol ; 58: 17-24, 2020 12.
Article in English | MEDLINE | ID: mdl-33099210

ABSTRACT

All the above-ground organs of a plant are derived from stem cells that reside in shoot apical meristems (SAM). Over the past 25 years, the genetic pathways that control the proliferation of stem cells within the SAM, and the differentiation of their progenitors into lateral organs, have been described in great detail. However, longstanding questions regarding the importance of communication between cells within the SAM and lateral organs have, until recently, remained unanswered. In this review, we describe recent investigations into the extent, nature and significance of signaling both to and from the SAM.


Subject(s)
Meristem , Signal Transduction , Gene Expression Regulation, Plant , Meristem/genetics , Plant Shoots/genetics , Plants , Stem Cells
3.
J Photochem Photobiol B ; 209: 111931, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32559646

ABSTRACT

During shoot development, leaves undergo various ontogenetic changes, including variation in size, shape, and geometry. Passiflora edulis (passionfruit) is a heteroblastic species, which means that it experiences conspicuous changes throughout development, enabling a morphological distinction between the juvenile and adult vegetative phases. Quantification of heteroblasty requires a practical, inexpensive, reliable, and non-destructive method, such as remote sensing. Moreover, relationships among ontogenetic changes and spectral signal at leaf level can be scaled up to support precision agriculture in passion fruit crops. In the present study, we used laboratory spectroscopic measurements (400-2500 nm) and narrowband vegetation indexes (or hyperspectral vegetation indexes - HVIs) to evaluate ontogenetic changes related to development and aging in P. edulis leaves. We also assessed leaf pigment concentration to further support the application of biochemical-related narrowband indexes. We report that 30-d-old leaves can be discriminated into developmental stages through their spectral signals. MSI (Moisture Stress Index) and NDVI750 (Normalized Difference Vegetation Index ρ750) contribute most to the variation of age (15 to 30-d-old leaves) and developmental stage (phytomer positions along the plant axis) in passionfruit leaves. PRI (Photochemical Reflectance Index) played an important role in detecting age and development alterations, including heteroblasty. A biochemical and spectral comparison of pigments revealed that spectroscopy offered potential for diagnosing phenology in P. edulis, as some narrowband indexes correlated strongly with chlorophylls and carotenoids content. Narrowband vegetation indexes are found to be a suitable tool for monitoring passionfruit crops.


Subject(s)
Passiflora/growth & development , Plant Leaves/growth & development , Spectrum Analysis/methods , Carotenoids/analysis , Chlorophyll/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...