Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 13(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34679015

ABSTRACT

The voltage-gated sodium channel NaV1.7 is an important target for drug development due to its role in pain perception. Recombinant expression of full-length channels and their use for biophysical characterization of interactions with potential drug candidates is challenging due to the protein size and complexity. To overcome this issue, we developed a protocol for the recombinant expression in E. coli and refolding into lipids of the isolated voltage sensing domain (VSD) of repeat II of NaV1.7, obtaining yields of about 2 mg of refolded VSD from 1 L bacterial cell culture. This VSD is known to be involved in the binding of a number of gating-modifier toxins, including the tarantula toxins ProTx-II and GpTx-I. Binding studies using microscale thermophoresis showed that recombinant refolded VSD binds both of these toxins with dissociation constants in the high nM range, and their relative binding affinities reflect the relative IC50 values of these toxins for full-channel inhibition. Additionally, we expressed mutant VSDs incorporating single amino acid substitutions that had previously been shown to affect the activity of ProTx-II on full channel. We found decreases in GpTx-I binding affinity for these mutants, consistent with a similar binding mechanism for GpTx-I as compared to that of ProTx-II. Therefore, this recombinant VSD captures many of the native interactions between NaV1.7 and tarantula gating-modifier toxins and represents a valuable tool for elucidating details of toxin binding and specificity that could help in the design of non-addictive pain medication acting through NaV1.7 inhibition.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/chemistry , Protein Folding , Spider Venoms/chemistry , Amino Acid Substitution , Binding Sites , Escherichia coli , Humans , Recombinant Proteins
2.
J Phys Chem Lett ; 11(22): 9795-9801, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33151058

ABSTRACT

Ion channels are often targeted by toxins or other ligands to modify their channel activities and alter ion conductance. Interactions between toxins and ion channels could result in changes in membrane insertion depth for residues close to the binding site. Paramagnetic solid-state nuclear magnetic resonance (SSNMR) has shown great potential in providing structural information on membrane samples. We used KcsA as a model ion channel to investigate how the paramagnetic effects of Mn2+ and Dy3+ ions with headgroup-modified chelator lipids would influence the SSNMR signals of membrane proteins in proteoliposomes. Spectral comparisons have shown significant changes of peak intensities for the residues in the loop or terminal regions due to paramagnetic effects corresponding to the close proximity to the membrane surface. Hence, these results demonstrate that paramagnetic SSNMR can be used to detect surface residues based on the topology and membrane insertion properties for integral membrane proteins.

3.
Proc Natl Acad Sci U S A ; 114(38): E8100-E8109, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874590

ABSTRACT

Venom peptide toxins such as conotoxins play a critical role in the characterization of nicotinic acetylcholine receptor (nAChR) structure and function and have potential as nervous system therapeutics as well. However, the lack of solved structures of conotoxins bound to nAChRs and the large size of these peptides are barriers to their computational docking and design. We addressed these challenges in the context of the α4ß2 nAChR, a widespread ligand-gated ion channel in the brain and a target for nicotine addiction therapy, and the 19-residue conotoxin α-GID that antagonizes it. We developed a docking algorithm, ToxDock, which used ensemble-docking and extensive conformational sampling to dock α-GID and its analogs to an α4ß2 nAChR homology model. Experimental testing demonstrated that a virtual screen with ToxDock correctly identified three bioactive α-GID mutants (α-GID[A10V], α-GID[V13I], and α-GID[V13Y]) and one inactive variant (α-GID[A10Q]). Two mutants, α-GID[A10V] and α-GID[V13Y], had substantially reduced potency at the human α7 nAChR relative to α-GID, a desirable feature for α-GID analogs. The general usefulness of the docking algorithm was highlighted by redocking of peptide toxins to two ion channels and a binding protein in which the peptide toxins successfully reverted back to near-native crystallographic poses after being perturbed. Our results demonstrate that ToxDock can overcome two fundamental challenges of docking large toxin peptides to ion channel homology models, as exemplified by the α-GID:α4ß2 nAChR complex, and is extendable to other toxin peptides and ion channels. ToxDock is freely available at rosie.rosettacommons.org/tox_dock.


Subject(s)
Algorithms , Aplysia/chemistry , Conotoxins/chemistry , Molecular Docking Simulation/methods , Nicotinic Antagonists/chemistry , Receptors, Nicotinic/chemistry , Animals , Humans
4.
Sci Rep ; 6: 23904, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27044983

ABSTRACT

Due to their central role in essential physiological processes, potassium channels are common targets for animal toxins. These toxins in turn are of great value as tools for studying channel function and as lead compounds for drug development. Here, we used a direct toxin pull-down assay with immobilised KcsA potassium channel to isolate a novel KcsA-binding toxin (called Tx7335) from eastern green mamba snake (Dendroaspis angusticeps) venom. Sequencing of the toxin by Edman degradation and mass spectrometry revealed a 63 amino acid residue peptide with 4 disulphide bonds that belongs to the three-finger toxin family, but with a unique modification of its disulphide-bridge scaffold. The toxin induces a dose-dependent increase in both open probabilities and mean open times on KcsA in artificial bilayers. Thus, it unexpectedly behaves as a channel activator rather than an inhibitor. A charybdotoxin-sensitive mutant of KcsA exhibits similar susceptibility to Tx7335 as wild-type, indicating that the binding site for Tx7335 is distinct from that of canonical pore-blocker toxins. Based on the extracellular location of the toxin binding site (far away from the intracellular pH gate), we propose that Tx7335 increases potassium flow through KcsA by allosterically reducing inactivation of the channel.


Subject(s)
Elapid Venoms/chemistry , Elapidae , Potassium Channels/metabolism , Reptilian Proteins/chemistry , Snake Venoms/chemistry , Toxins, Biological/chemistry , Allosteric Regulation , Amino Acids/chemistry , Animals , Binding Sites , Charybdotoxin/chemistry , Chromatography, High Pressure Liquid , Disulfides/chemistry , Electrophysiology , Hydrogen-Ion Concentration , Mass Spectrometry , Membranes, Artificial , Mutation , Peptides/chemistry , Probability , Protein Binding , Protein Structure, Secondary , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.
ACS Appl Mater Interfaces ; 8(17): 10788-99, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27070413

ABSTRACT

Precise dispensing of nanoliter droplets is necessary for the development of sensitive and accurate assays, especially when the availability of the source solution is limited. Conventional approaches are limited by imprecise positioning, large shear forces, surface tension effects, and high costs. To address the need for precise and economical dispensing of nanoliter volumes, we developed a new approach where the dispensed volume is dependent on the size and shape of defined surface features, thus freeing the dispensing process from pumps and fine-gauge needles requiring accurate positioning. The surface we fabricated, called a nanoliter droplet virtual well microplate (nVWP), achieves high-precision dispensing (better than ±0.5 nL or ±1.6% at 32 nL) of 20-40 nL droplets using a small source drop (3-10 µL) on isolated hydrophilic glass pedestals (500 µm on a side) bonded to arrays of polydimethylsiloxane conical posts. The sharp 90° edge of the glass pedestal pins the solid-liquid-vapor triple contact line (TCL), averting the wetting of the glass sidewalls while the fluid is prevented from receding from the edge. This edge creates a sufficiently large energy barrier such that microliter water droplets can be poised on the glass pedestals, exhibiting contact angles greater >150°. This approach relieves the stringent mechanical alignment tolerances required for conventional dispensing techniques, shifting the control of dispensed volume to the area circumscribed by the glass edge. The effects of glass surface chemistry and dispense velocity on droplet volume were studied using optical microscopy and high-speed video. Functionalization of the glass pedestal surface enabled the selective adsorption of specific peptides and proteins from synthetic and natural biomolecule mixtures, such as venom. We further demonstrate how the nVWP dispensing platform can be used for a variety of assays, including sensitive detection of proteins and peptides by fluorescence microscopy or MALDI-TOF.


Subject(s)
Nanostructures , Glass , Hydrophobic and Hydrophilic Interactions , Proteins , Wettability
6.
PLoS One ; 9(4): e94122, 2014.
Article in English | MEDLINE | ID: mdl-24713808

ABSTRACT

Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng) specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides.


Subject(s)
Disulfides/analysis , Gastropoda , Peptides/chemistry , Toxins, Biological/chemistry , Venoms/chemistry , Animals , Magnetic Resonance Spectroscopy , Mass Spectrometry
7.
Biomol NMR Assign ; 4(2): 139-42, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20407887

ABSTRACT

The plasmid-encoded small multidrug resistance pump from S. aureus transports a variety of quaternary ammonium and other hydrophobic compounds, enhancing the bacterial host's resistance to common hospital disinfectants. The protein folds as a homo-dimer of four transmembrane helices each, and appears to be fully functional only in lipid bilayers. Here we report the backbone resonance assignments and implied secondary structure for (2)H(13)C(15)N Smr reconstituted into lipid bicelles. Significant changes were observed between the chemical shifts of the protein in lipid bicelles compared to those in detergent micelles.


Subject(s)
Antiporters/chemistry , Nuclear Magnetic Resonance, Biomolecular , Staphylococcus aureus/chemistry , Carbon Isotopes , Hydrogen , Nitrogen Isotopes , Protein Structure, Secondary
8.
Biochim Biophys Acta ; 1768(12): 3098-106, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17961504

ABSTRACT

Considerable progress has been made recently on solution NMR studies of multi-transmembrane helix membrane protein systems of increasing size. Careful correlation of structure with function has validated the physiological relevance of these studies in detergent micelles. However, larger micelle and bicelle systems are sometimes required to stabilize the active forms of dynamic membrane proteins, such as the bacterial small multidrug resistance transporters. Even in these systems with aggregate molecular weights well over 100 kDa, solution NMR structural studies are feasible-but challenging.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Micelles , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...