Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5580, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696830

ABSTRACT

The soft-grainy microstructure of cooked egg yolk is the result of a series of out-of-equilibrium processes of its protein-lipid contents; however, it is unclear how egg yolk constituents contribute to these processes to create the desired microstructure. By employing X-ray photon correlation spectroscopy, we investigate the functional contribution of egg yolk constituents: proteins, low-density lipoproteins (LDLs), and yolk-granules to the development of grainy-gel microstructure and microscopic dynamics during cooking. We find that the viscosity of the heated egg yolk is solely determined by the degree of protein gelation, whereas the grainy-gel microstructure is controlled by the extent of LDL aggregation. Overall, protein denaturation-aggregation-gelation and LDL-aggregation follows Arrhenius-type time-temperature superposition (TTS), indicating an identical mechanism with a temperature-dependent reaction rate. However, above 75 °C TTS breaks down and temperature-independent gelation dynamics is observed, demonstrating that the temperature can no longer accelerate certain non-equilibrium processes above a threshold value.


Subject(s)
Egg Yolk , Hot Temperature , X-Rays , Radiography , Temperature , Edible Grain , Lipoproteins, LDL
2.
Sci Rep ; 13(1): 11048, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422480

ABSTRACT

We use X-ray photon correlation spectroscopy to investigate how structure and dynamics of egg white protein gels are affected by X-ray dose and dose rate. We find that both, changes in structure and beam-induced dynamics, depend on the viscoelastic properties of the gels with soft gels prepared at low temperatures being more sensitive to beam-induced effects. Soft gels can be fluidized by X-ray doses of a few kGy with a crossover from stress relaxation dynamics (Kohlrausch-Williams-Watts exponents [Formula: see text] to 2) to typical dynamical heterogeneous behavior ([Formula: see text]1) while the high temperature egg white gels are radiation-stable up to doses of 15 kGy with [Formula: see text]. For all gel samples we observe a crossover from equilibrium dynamics to beam induced motion upon increasing X-ray fluence and determine the resulting fluence threshold values [Formula: see text]. Surprisingly small threshold values of [Formula: see text] s[Formula: see text] nm[Formula: see text] can drive the dynamics in the soft gels while for stronger gels this threshold is increased to [Formula: see text] s[Formula: see text] nm[Formula: see text]. We explain our observations with the viscoelastic properties of the materials and can connect the threshold dose for structural beam damage with the dynamic properties of beam-induced motion. Our results suggest that soft viscoelastic materials can display pronounced X-ray driven motion even for low X-ray fluences. This induced motion is not detectable by static scattering as it appears at dose values well below the static damage threshold. We show that intrinsic sample dynamics can be separated from X-ray driven motion by measuring the fluence dependence of the dynamical properties.


Subject(s)
X-Rays , Radiography , Gels
3.
Nat Commun ; 13(1): 5528, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130930

ABSTRACT

X-ray free-electron lasers (XFELs) with megahertz repetition rate can provide novel insights into structural dynamics of biological macromolecule solutions. However, very high dose rates can lead to beam-induced dynamics and structural changes due to radiation damage. Here, we probe the dynamics of dense antibody protein (Ig-PEG) solutions using megahertz X-ray photon correlation spectroscopy (MHz-XPCS) at the European XFEL. By varying the total dose and dose rate, we identify a regime for measuring the motion of proteins in their first coordination shell, quantify XFEL-induced effects such as driven motion, and map out the extent of agglomeration dynamics. The results indicate that for average dose rates below 1.06 kGy µs-1 in a time window up to 10 µs, it is possible to capture the protein dynamics before the onset of beam induced aggregation. We refer to this approach as correlation before aggregation and demonstrate that MHz-XPCS bridges an important spatio-temporal gap in measurement techniques for biological samples.


Subject(s)
Electrons , Lasers , Immunoglobulins , Proteins/chemistry , Radiography , X-Rays
4.
Analyst ; 146(19): 6005-6013, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34505583

ABSTRACT

Using a fast electrochemical quartz crystal microbalance (EQCM), zwitterionic electrolytes were studied with regard to changes of resonance frequency and resonance bandwidth after the electrode potential was switched. In addition to a fast change of frequency (within milliseconds), a further, slower process with opposite direction is observed. Both the fast and the slow process change sign when the pH is varied across the isoelectric point (pI). The fast process can be attributed to double layer recharging. Its characteristic time is slightly larger than the charge response time (the RC-time) as inferred from electrochemical impedance spectroscopy (EIS). With regard to the slow process, amino acids with moderate concentration behave markedly different from concentrated solutions of proteins. For amino acids, the slow process is larger in amplitude than the fast process and the QCM response is Sauerbrey-like. The shift in half bandwidth is smaller than the shift in frequency and the overtone-normalized frequency shifts agree between overtones (-Δf/n ≈ const. with n the overtone order). This can be explained with a viscosity change in the diffuse double layer. Independent measurements show that the viscosities of these electrolytes are higher than the average in a pH range around the pI. Presumably, the slow process reflects a rearrangement of molecules after the net charge on the molecule has increased or decreased, changing the degree of dipolar coupling and, in consequence, the viscosity. For concentrated solutions of bovine serum albumin (BSA), the QCM response does not follow Sauerbrey behaviour, which can be explained with viscoelasticity and viscoelastic dispersion. The slow process lets the frequency and the bandwidth relax towards a baseline, which is the same for jumps to more positive and to more negative potentials. Presumably, the slow process in this case is caused by a reorientation of molecules inside the Helmholtz layer, such that they screen the electric field more efficiently than immediately after the voltage jump.


Subject(s)
Electrolytes , Quartz Crystal Microbalance Techniques , Electrodes , Hydrogen-Ion Concentration , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...