Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731618

ABSTRACT

Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.


Subject(s)
Indoles , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Indoles/chemistry , Indoles/pharmacology , Indoles/therapeutic use , Neurodegenerative Diseases/drug therapy , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemistry
2.
J Med Chem ; 67(1): 17-37, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38113353

ABSTRACT

Mitochondria dysfunctions are typical hallmarks of cardiac disorders (CDs). The multiple tasks of this energy-producing organelle are well documented, but its pathophysiologic involvement in several manifestations of heart diseases, such as altered electromechanical coupling, excitability, and arrhythmias, is still under investigation. The human 18 kDa translocator protein (TSPO) is a protein located on the outer mitochondrial membrane whose expression is altered in different pathological conditions, including CDs, making it an attractive therapeutic and diagnostic target. Currently, only a few TSPO ligands are employed in CDs and cardiac imaging. In this Perspective, we report an overview of the emerging role of TSPO at the heart level, focusing on the recent literature concerning the development of TSPO ligands used for fighting and imaging heart-related disease conditions. Accordingly, targeting TSPO might represent a successful strategy to achieve novel therapeutic and diagnostic strategies to unravel the fundamental mechanisms and to provide solutions to still unanswered questions in CDs.


Subject(s)
Heart Diseases , Receptors, GABA , Humans , Receptors, GABA/metabolism , Mitochondrial Membranes/metabolism , Heart Diseases/drug therapy , Heart Diseases/metabolism , Ligands
3.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513909

ABSTRACT

In recent years, indolylglyoxylamide-based derivatives have received much attention due to their application in drug design and discovery, leading to the development of a wide array of compounds that have shown a variety of pharmacological activities. Combining the indole nucleus, already validated as a "privileged structure," with the glyoxylamide function allowed for an excellent template to be obtained that is suitable to a great number of structural modifications aimed at permitting interaction with specific molecular targets and producing desirable therapeutic effects. The present review provides insight into how medicinal chemists have elegantly exploited the indolylglyoxylamide moiety to obtain potentially useful drugs, with a particular focus on compounds exhibiting activity in in vivo models or reaching clinical trials. All in all, this information provides exciting new perspectives on existing data that can be useful in further design of indolylglyoxylamide-based molecules with interesting pharmacological profiles. The aim of this report is to present an update of collection data dealing with the employment of this moiety in the rational design of compounds that are able to interact with a specific target, referring to the last 20 years.

4.
Biometals ; 36(5): 961-968, 2023 10.
Article in English | MEDLINE | ID: mdl-36869967

ABSTRACT

Auranofin ([1-(thio-κS)-ß-D-glucopyranose-2,3,4,6-tetraacetato](triethylphosphine)-gold) is a leading gold-based drug clinically used to treat arthritis. In the last years, it entered various drug reprofiling programs, and it has been found promising against various forms of tumor, including ovarian cancer. Evidence showed as its antiproliferative profile mainly depends on the inhibition of thioredoxin reductase (TrxR), being this mitochondrial system its main target. In this context, we report here the synthesis and biological evaluation of a novel complex designed as auranofin analogue obtained through the conjugation of a phenylindolylglyoxylamide ligand (which belongs to the so-called PIGA TSPO ligand family) with the auranofin-derived cationic fragment [Au(PEt3)]+. This complex is characterized by two parts. The phenylindolylglyoxylamide moiety, owing to its high affinity for TSPO (in the low nM range) should drive the compound to target mitochondria, whereas the [Au(PEt3)]+ cation is the actual anticancer-active molecular fragment. Overall, we wanted to offer the proof-of-concept that by coupling PIGA ligands to anticancer gold active moieties, it is possible to preserve and even improve anticancer effects, opening the avenue to a reliable approach for targeted therapy.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Auranofin , Pharmacophore , Ligands , Antineoplastic Agents/chemistry , Gold/pharmacology , Gold/chemistry , Thioredoxin-Disulfide Reductase , Ovarian Neoplasms/drug therapy , Cell Line, Tumor , Receptors, GABA
5.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985576

ABSTRACT

Glioblastoma (GBM) is the most aggressive and frequent primary brain tumor, with a poor prognosis and the highest mortality rate. Currently, GBM therapy consists of surgical resection of the tumor, radiotherapy, and adjuvant chemotherapy with temozolomide. Consistently, there are poor treatment options and only modest anticancer efficacy is achieved; therefore, there is still a need for the development of new effective therapies for GBM. Indole is considered one of the most privileged scaffolds in heterocyclic chemistry, so it may serve as an effective probe for the development of new drug candidates against challenging diseases, including GBM. This review analyzes the therapeutic benefit and clinical development of novel indole-based derivatives investigated as promising anti-GBM agents. The existing indole-based compounds which are in the pre-clinical and clinical stages of development against GBM are reported, with particular reference to the most recent advances between 2013 and 2022. The main mechanisms of action underlying their anti-GBM efficacy, such as protein kinase, tubulin and p53 pathway inhibition, are also discussed. The final goal is to pave the way for medicinal chemists in the future design and development of novel effective indole-based anti-GBM agents.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/metabolism , Temozolomide/pharmacology , Indoles/pharmacology , Indoles/therapeutic use , Brain Neoplasms/metabolism
6.
Biomedicines ; 10(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36428499

ABSTRACT

Topoisomerase (Topo) inhibitors have long been known as clinically effective drugs, while G-quadruplex (G4)-targeting compounds are emerging as a promising new strategy to target tumor cells and could support personalized treatment approaches in the near future. G-quadruplex (G4) is a secondary four-stranded DNA helical structure constituted of guanine-rich nucleic acids, and its stabilization impairs telomere replication, triggering the activation of several protein factors at telomere levels, including Topos. Thus, the pharmacological intervention through the simultaneous G4 stabilization and Topos inhibition offers a new opportunity to achieve greater antiproliferative activity and circumvent cellular insensitivity and resistance. In this line, dual ligands targeting both Topos and G4 emerge as innovative, efficient agents in cancer therapy. Although the research in this field is still limited, to date, some chemotypes have been identified, showing this dual activity and an interesting pharmacological profile. This paper reviews the available literature on dual Topo inhibitors/G4 stabilizing agents, with particular attention to the structure-activity relationship studies correlating the dual activity with the cytotoxic activity.

7.
Arch Pharm (Weinheim) ; 355(11): e2200295, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35904260

ABSTRACT

A series of novel 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazine (BIT) derivatives were designed and synthesized. In vitro antiproliferative activity was detected toward two human colorectal adenocarcinoma cell lines (CaCo-2 and HT-29) and one human dermal microvascular endothelial cell line (HMVEC-d). The most active compounds, namely 2-4 and 8, were further investigated to clarify the mechanism behind their biological activity. Through immunofluorescence assay, we identified the target of these molecules to be the microtubule cytoskeleton with subsequent formation of dense microtubule accumulation, particularly at the periphery of the cancer cells, as observed in paclitaxel-treated cells. Overall, these results highlight BIT derivatives as robust and feasible candidates deserving to be further developed in the search for novel potent antiproliferative microtubule-targeting agents.


Subject(s)
Antineoplastic Agents , Triazines , Humans , Triazines/pharmacology , Structure-Activity Relationship , Caco-2 Cells , Cell Proliferation , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Cell Line, Tumor , Molecular Structure
8.
Molecules ; 27(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35458743

ABSTRACT

Carbonic anhydrases (CAs) are a family of ubiquitous metal enzymes catalyzing the reversible conversion of CO2 and H2O to HCO3- with the release of a proton. They play an important role in pH regulation and in the balance of body fluids and are involved in several functions such as homeostasis regulation and cellular respiration. For these reasons, they have been studied as targets for the development of agents for treating several pathologies. CA inhibitors have been used in therapy for a long time, especially as diuretics and for the treatment of glaucoma, and are being investigated for application in other pathologies including obesity, cancer, and epilepsy. On the contrary, CAs activators are still poorly studied. They are proposed to act as additional (other than histidine) proton shuttles in the rate-limiting step of the CA catalytic cycle, which is the generation of the active hydroxylated enzyme. Recent studies highlight the involvement of CAs activation in brain processes essential for the transmission of neuronal signals, suggesting CAs activation might represent a potential therapeutic approach for the treatment of Alzheimer's disease and other conditions characterized by memory impairment and cognitive problems. Actually, some compounds able to activate CAs have been identified and proposed to potentially resolve problems related to neurodegeneration. This review reports on the primary literature regarding the potential of CA activators for treating neurodegeneration-related diseases.


Subject(s)
Carbonic Anhydrases , Enzyme Activators , Epilepsy , Neurodegenerative Diseases , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/therapeutic use , Carbonic Anhydrases/chemistry , Catalysis , Enzyme Activators/therapeutic use , Epilepsy/drug therapy , Humans , Neurodegenerative Diseases/drug therapy , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...