Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 104: 109965, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31499965

ABSTRACT

The paper presents the results of studies of biocompatibility and antibacterial properties of multiphase nanocomposite materials based on HA-Alg-ZnO (hydroxyapatite­sodium alginate-biphasic zinc oxide) and HA-ZnO (hydroxyapatite­zinc oxide), which were synthesized from the analytically pure calcium nitrate tetrahydrate, ammonium hydrophosphate, hydrous ammonia, zinc nitrate hexahydrate and calcium chloride. The samples' antimicrobial activity assessment was carried out on Gram-negative (E. coli, P. aeruginosa) and Gram-positive bacteria (S. aureus and S. epidermidis) test cultures by the co-incubation and modified "agar diffusion" methods. The murine fibroblast cells were used for the biocompatibility tests and cytotoxicity evaluation. It was shown that synthesized nanocomposite material has a multiphase nanoscale architecture, where ZnO nanocrystals are represented by two lattices: cubic and hexagonal. The possible explanation of ZnO nanocrystals' phase transition is given. At the same time, a partial replacement of Ca2+ ions by Zn2+ ions in the HA lattice possibly occurs due to processing of composite by US radiation. The replacement was evidenced by the non-stoichiometric Ca/P ratio < 2.16, OPO lines' shifting on FTIR spectrum and TEM analysis. The studied composite demonstrate a pronounced antibacterial activity due to the incorporation of ZnO particles into sodium alginate and moistened powder of hydroxyapatite. Both forms of HA-ZnO (suspension) and HA-Alg-ZnO (beads) are biocompatible. An interpretation of the process of Zn ions' embedding into hydroxyapatite and alginate matrix is given, as well as their influence on the biomimetic composite properties is discussed in details. STATEMENT OF SIGNIFICANCE: A number of studies have shown that Zn effectively inhibits the growth and development of bacteria and yeast fungi. Zinc plays an important role in the creation of new antimicrobial agents, and zinc-doped hydroxyapatite will find further application in biomedicine. In this regard, the phase states of zinc oxide, as well as the processes of calcium replacement by zinc in calcium apatite and in alginate should be explored fully. Nowadays we have lack of information and the study's results about those interactions. The present study provides data of the multiphase morphology, antimicrobial activity, biocompatibility and cytotoxicity of the biomimetic nanostructured composite materials, such as sodium alginate/hydroxyapatite/ZnO based granules and hydroxyapatite/ZnO based hydrogel, and the establishing Zn ions' behavior patterns with another composite components.


Subject(s)
Alginates/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Durapatite/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Zinc Oxide/chemistry , Animals , Bacteria/drug effects , Cell Line , Coated Materials, Biocompatible/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , NIH 3T3 Cells
2.
J Nanosci Nanotechnol ; 12(12): 9213-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23447980

ABSTRACT

Zr-Ti-Si-N coating had high thermal stability of phase composition and remained structure state under thermal annealing temperatures reached 1180 degrees C in vacuum and 830 degrees C in air. Effect of isochronous annealing on phase composition, structure, and stress state of Zr-Ti-Si-N-ion-plasma deposited coatings (nanocomposite coatings) was reported. Below 1000 degrees C annealing temperature in vacuum, changing of phase composition is determined by appearing of siliconitride crystallites (beta-Si3N4) with hexagonal crystalline lattice and by formation of ZrO2 oxide crystallites. Formation of the latter did not result in decay of solid solution (Zr, Ti)N but increased in it a specific content of Ti-component. Vacuum annealing increased sizes of solid solution nanocrystallites from (12 to 15) in as-deposited coatings to 25 nm after annealing temperature reached 1180 degrees C. One could also find macro- and microrelaxations, which were accompanied by formation of deformation defects, which values reached 15.5 vol.%. Under 530 degrees C annealing in vacuum or in air, nanocomposite coating hardness increased. When Ti and Si concentration increased and three phases nc-ZrN, (Zr, Ti)N-nc, and alpha-Si3N4 were formed, average hardness increased to 40.8 +/- 4 GPa. Annealing to 500 degrees C increased hardness and demonstrated lower spread in values H = 48 +/- 6 GPa and E = (456 +/- 78) GPa. Zr-Ti-Si-N coatings has high wear resistance and low friction coefficient in comparison at a temperature of 500 degrees C possess with coatings TiN, Ti-Si-N.

SELECTION OF CITATIONS
SEARCH DETAIL
...