Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20571, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36446821

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) induces action potentials to induce plastic changes in the brain with increasing evidence for the therapeutic importance of brain-wide functional network effects of rTMS; however, the influence of sub-action potential threshold (low-intensity; LI-) rTMS on neuronal activity is largely unknown. We investigated whether LI-rTMS modulates neuronal activity and functional connectivity and also specifically assessed modulation of parvalbumin interneuron activity. We conducted a brain-wide analysis of c-Fos, a marker for neuronal activity, in mice that received LI-rTMS to visual cortex. Mice received single or multiple sessions of excitatory 10 Hz LI-rTMS with custom rodent coils or were sham controls. We assessed changes to c-Fos positive cell densities and c-Fos/parvalbumin co-expression. Peak c-Fos expression corresponded with activity during rTMS. We also assessed functional connectivity changes using brain-wide c-Fos-based network analysis. LI-rTMS modulated c-Fos expression in cortical and subcortical regions. c-Fos density changes were most prevalent with acute stimulation, however chronic stimulation decreased parvalbumin interneuron activity, most prominently in the amygdala and striatum. LI-rTMS also increased anti-correlated functional connectivity, with the most prominent effects also in the amygdala and striatum following chronic stimulation. LI-rTMS induces changes in c-Fos expression that suggest modulation of neuronal activity and functional connectivity throughout the brain. Our results suggest that LI-rTMS promotes anticorrelated functional connectivity, possibly due to decreased parvalbumin interneuron activation induced by chronic stimulation. These changes may underpin therapeutic rTMS effects, therefore modulation of subcortical activity supports rTMS for treatment of disorders involving subcortical dysregulation.


Subject(s)
Graft vs Host Disease , Transcranial Magnetic Stimulation , Animals , Mice , Parvalbumins , Brain , Antibodies , Light , Proto-Oncogene Proteins c-fos
2.
Int J Mol Sci ; 23(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35269561

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that has the potential to treat a variety of neurologic and psychiatric disorders. The extent of rTMS-induced neuroplasticity may be dependent on a subject's brain state at the time of stimulation. Chronic low intensity rTMS (LI-rTMS) has previously been shown to induce beneficial structural and functional reorganisation within the abnormal visual circuits of ephrin-A2A5-/- mice in ambient lighting. Here, we administered chronic LI-rTMS in adult ephrin-A2A5-/- mice either in a dark environment or concurrently with voluntary locomotion. One day after the last stimulation session, optokinetic responses were assessed and fluorescent tracers were injected to map corticotectal and geniculocortical projections. We found that LI-rTMS in either treatment condition refined the geniculocortical map. Corticotectal projections were improved in locomotion+LI-rTMS subjects, but not in dark + LI-rTMS and sham groups. Visuomotor behaviour was not improved in any condition. Our results suggest that the beneficial reorganisation of abnormal visual circuits by rTMS can be significantly influenced by simultaneous, ambient visual input and is enhanced by concomitant physical exercise. Furthermore, the observed pathway-specific effects suggest that regional molecular changes and/or the relative proximity of terminals to the induced electric fields influence the outcomes of LI-rTMS on abnormal circuitry.


Subject(s)
Ephrin-A2/genetics , Ephrin-A5/genetics , Transcranial Magnetic Stimulation/methods , Visual Cortex/physiology , Animals , Gene Knockdown Techniques , Light , Locomotion , Mice , Models, Animal , Neuronal Plasticity , Psychomotor Performance
3.
J Neurosci Methods ; 360: 109261, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34146593

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation is a promising noninvasive therapeutic tool for a variety of brain-related disorders. However, most therapeutic protocols target the anterior regions, leaving many other areas unexplored. There is a substantial therapeutic potential for stimulating various brain regions, which can be optimized in animal models. NEW METHOD: We illustrate a method that can be utilized reliably to stimulate the anterior or posterior brain in freely moving rodents. A coil support device is surgically attached onto the skull, which is used for consistent coil placement over the course of up to several weeks of stimulation sessions. RESULTS: Our methods provide reliable stimulation in animals without the need for restraint or sedation. We see little aversive effects of support placement and stimulation. Computational models provide evidence that moving the coil support location can be utilized to target major stimulation sites in humans and mice. SUMMARY OF FINDINGS WITH THIS METHOD: Animal models are key to optimizing brain stimulation parameters, but research relies on restraint or sedation for consistency in coil placement. The method described here provides a unique means for reliable targeted stimulation in freely moving animals. Research utilizing this method has uncovered changes in biochemical and animal behavioral measurements as a function of brain stimulation. CONCLUSIONS: The majority of research on magnetic stimulation focuses on anterior regions. Given the substantial network connectivity throughout the brain, it is critical to develop a reliable method for stimulating different regions. The method described here can be utilized to better inform clinical trials about optimal treatment localization, stimulation intensity and number of treatment sessions, and provides a motivation for exploring posterior brain regions for both mice and humans.


Subject(s)
Brain , Depression , Animals , Mice , Models, Animal , Stereotaxic Techniques , Transcranial Magnetic Stimulation
4.
Behav Brain Res ; 400: 113011, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33181182

ABSTRACT

Changes within the dopaminergic system induced by repetitive transcranial magnetic stimulation (rTMS) may contribute to its therapeutic effects; however, dopamine-related behavioral effects of rTMS have not been widely investigated. We recently showed that ephrin-A2A5-/- mice completed significantly fewer trials in a visual task than wildtype mice, and that concurrent low-intensity (LI-) rTMS during the task could partially rescue the abnormal behavior [Poh et al. 2018, eNeuro, vol. 5]. Here, we investigated whether the behavioral differences in ephrin-A2A5-/- mice are due to abnormal motivation, primarily a dopamine-modulated behavior, and whether LI-rTMS would increase motivation. Ephrin-A2A5-/- and wildtype mice underwent 14 daily sessions of progressive ratio (PR) tasks and received either sham or LI-rTMS during the first 10 min. Ephrin-A2A5-/- mice responded more than wildtype comparisons, and LI-rTMS did not influence task performance for either strain. Therefore concurrent stimulation does not influence motivation in a PR task. However, ephrin-A2A5-/- mice did have abnormal performance in the PR tasks after a change in the PR schedule which suggests perseverative behavior. We stained for c-Fos in the prelimbic area (PrL), ventral tegmental area and nucleus accumbens (NAc) core and shell to examine neuronal activity from the final PR session. Sham ephrin-A2A5-/- mice had lower c-Fos expression in the PrL and NAc vs. wildtype mice. Ephrin-A2A5-/- mice that received LI-rTMS showed c-Fos expression closer to wildtype levels in the NAc. Combined with high PR performance, ephrin-A2A5-/- mice show an abnormal shift to habitual responding and LI-rTMS may attenuate this shift.


Subject(s)
Behavior, Animal/physiology , Ephrin-A2/physiology , Ephrin-A5/physiology , Habits , Motivation/physiology , Proto-Oncogene Proteins c-fos/metabolism , Psychomotor Performance/physiology , Reward , Transcranial Magnetic Stimulation , Animals , Female , Male , Mice , Mice, Inbred C57BL
5.
Front Neurosci ; 14: 137, 2020.
Article in English | MEDLINE | ID: mdl-32210744

ABSTRACT

Cocaine use disorder and methamphetamine use disorder are chronic, relapsing disorders with no US Food and Drug Administration-approved interventions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool that has been increasingly investigated as a possible therapeutic intervention for substance use disorders. rTMS may have the ability to induce beneficial neuroplasticity in abnormal circuits and networks in individuals with addiction. The aim of this review is to highlight the rationale and potential for rTMS to treat cocaine and methamphetamine dependence: we synthesize the outcomes of studies in healthy humans and animal models to identify and understand the neurobiological mechanisms of rTMS that seem most involved in addiction, focusing on the dopaminergic and glutamatergic systems. rTMS-induced changes to neurotransmitter systems include alterations to striatal dopamine release and metabolite levels, as well as to glutamate transporter and receptor expression, which may be relevant for ameliorating the aberrant plasticity observed in individuals with substance use disorders. We also discuss the clinical studies that have used rTMS in humans with cocaine and methamphetamine use disorders. Many such studies suggest changes in network connectivity following acute rTMS, which may underpin reduced craving following chronic rTMS. We suggest several possible future directions for research relating to the therapeutic potential of rTMS in addiction that would help fill current gaps in the literature. Such research would apply rTMS to animal models of addiction, developing a translational pipeline that would guide evidence-based rTMS treatment of cocaine and methamphetamine use disorder.

6.
Neurochem Int ; 131: 104546, 2019 12.
Article in English | MEDLINE | ID: mdl-31518601

ABSTRACT

Repetitive Transcranial Magnetic Stimulation (rTMS) is a form of non-invasive brain stimulation that has shown therapeutic potential for various nervous system disorders. In addition to its modulatory effects on neuronal excitability, rTMS is capable of altering neurotransmitter (e.g., glutamate, GABA, dopamine and serotonin) concentrations in cortical and subcortical brain regions. Here we used a modified liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) to quantify changes in 27 free amino acids and the monoamines: dopamine (DA), serotonin (5HT) and their metabolites (DOPAC, HVA; 5HIAA) in the mouse brain. Awake C57BL/6 J mice (either sex, 8-12 weeks old) received 10 Hz rTMS using two devices that can deliver low (LI-; 12 mT; custom built) or high (Fo8-; 1.2 T; MagVenture) intensity rTMS. Sham (unstimulated) mice were used as controls. Samples were collected immediately following a single session of rTMS or sham and processed for LC-MS/MS. The modified LC-MS/MS method used to detect DA, 5-HT and their metabolites showed good accuracy and precision with regression coefficients greater than 0.999, and an intra- and inter-day reproducibility with values < 13%. Fo8-rTMS induced a significant reduction in cortical 5-HT turnover rates, hippocampal DOPAC and an increase in striatal DOPAC concentrations. Fo8-rTMS also reduced concentrations of hippocampal α-aminoadipic acid, and striatal serine, threonine, sarcosine, aspartate and glutamate. There were no changes in the level of any compounds following LI-rTMS as compared to sham. The rapid change in monoamine turnover and amino acid concentrations following Fo8-rTMS but not LI-rTMS suggests that different stimulation parameters recruit different cellular mechanisms related to rTMS-induced plasticity. The described method can be used for the characterisation of trace levels of neurotransmitters and amino acids in brain tissue homogenates, providing a useful and precise tool to investigate localised neurotransmitter changes in animal models of health and disease.


Subject(s)
Amino Acids/analysis , Amino Acids/metabolism , Brain Chemistry/radiation effects , Dopamine/analysis , Dopamine/metabolism , Serotonin/analysis , Serotonin/metabolism , Transcranial Magnetic Stimulation , Animals , Calibration , Cerebral Cortex/metabolism , Cerebral Cortex/radiation effects , Chromatography, High Pressure Liquid , Female , Hippocampus/metabolism , Hippocampus/radiation effects , Male , Mice , Mice, Inbred C57BL , Neostriatum/metabolism , Neostriatum/radiation effects , Reproducibility of Results , Tandem Mass Spectrometry
7.
eNeuro ; 5(1)2018.
Article in English | MEDLINE | ID: mdl-29464193

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) induces plasticity in normal and abnormal neural circuitries, an effect that may be influenced by intrinsic brain activity during treatment. Here, we study potential synergistic effects between low-intensity rTMS (LI-rTMS) and concurrent neural activity in promoting circuit reorganization and enhancing visual behavior. We used ephrin-A2A5-/- mice, which are known to possess visuotopic mapping errors that are ameliorated by LI-rTMS, and assessed the impact of stimulation when mice were engaged in a visual learning task. A detachable coil was affixed to each mouse, and animals underwent 2 wk of 10-min daily training in a two-choice visual discrimination task with concurrent LI-rTMS or sham stimulation. No-task controls (+LI-rTMS/sham) were placed in the task arena without visual task training. At the end of the experiment, visuomotor tracking behavior was assessed, and corticotectal and geniculocortical pathway organization was mapped by injections of fluorescent tracers into the primary visual cortex. Consistent with previous results, LI-rTMS alone improved geniculocortical and corticotectal topography, but combining LI-rTMS with the visual learning task prevented beneficial corticotectal reorganization and had no additional effect on geniculocortical topography or visuomotor tracking performance. Unexpectedly, there was a significant increase in the total number of trials completed by task + LI-rTMS mice in the visual learning task. Comparison with wild-type mice revealed that ephrin-A2A5-/- mice had reduced accuracy and response rates, suggesting a goal-directed behavioral deficit, which was improved by LI-rTMS. Our results suggest that concurrent brain activity during behavior interacts with LI-rTMS, altering behavior and different visual circuits in an abnormal system.


Subject(s)
Ephrin-A2/physiology , Ephrin-A5/physiology , Learning , Neuronal Plasticity , Psychomotor Performance , Transcranial Magnetic Stimulation , Visual Cortex/physiology , Animals , Behavior, Animal , Choice Behavior , Discrimination, Psychological , Ephrin-A2/genetics , Ephrin-A5/genetics , Female , Geniculate Bodies/physiology , Male , Mice, Inbred C57BL , Mice, Knockout , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...