Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(49): 30925, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-35498943

ABSTRACT

[This corrects the article DOI: 10.1039/D0RA09265G.].

2.
RSC Adv ; 11(7): 3963-3971, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-35424351

ABSTRACT

The preparation of graphene in three-dimensional mode represents an alternative method to maintain its characteristically large surface area, which, under normal circumstances, is diminished by the restacking of the individual sheets. Sufficiently stable 3D graphene enables the high surface area characteristic of monoatomic graphene layers to be obtained. Based on the coupling of the high surface area and the void spaces that are thus created, which act as pores, 3D graphene is anticipated to have potential as a sorbent material. In this study, lightweight 3D hollow graphene featuring a unique thin skeletal framework was developed using the Pickering emulsion route for oil absorbent applications. In this technique, toluene droplets stabilized by graphene oxide layers in a water system were used as the template, and upon the removal of the solvent by freeze-drying and microwave-assisted reduction, 3D hollow graphene was obtained. The produced 3D graphene demonstrates excellent sorption efficiencies of 84 to 145 g g-1 for different types of oil and organic solvents in the first absorption. This excellence can be attributed to its multi-level porosity as elucidated by mercury intrusion porosimetry (MIP) and Brunauer-Emmett-Teller (BET) surface area analysis, which indicated a bimodal pore size distribution with macroporosity and mesoporosity and a surface area of 127 m2 g-1. The 3D hollow graphene prepared using the Pickering emulsion template technique incorporating microwave treatment can be readily recycled using a solvent extraction process for a total of ten sorption-desorption cycles without significant losses in its efficiency, making it promising for further consideration as an appropriate material for oil spill incidents.

3.
Int J Biol Macromol ; 92: 11-19, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27373428

ABSTRACT

The present study sheds light on the physical and chemical characteristics of microcrystalline cellulose (MCC) isolated from oil palm fronds (OPF) pulps. It was found that the OPF MCC was identified as cellulose II polymorph, with higher crystallinity index than OPF α-cellulose (CrIOPFMCC: 71%>CrIOPFα-cellulose: 47%). This indicates that the acid hydrolysis allows the production of cellulose that is highly crystalline. BET surface area of OPF MCC was found to be higher than OPF α-cellulose (SBETOPFMCC: 5.64m2g-1>SBETOPFα-cellulose:Qa0 2.04m2g-1), which corroborates their potential as an adsorbent. In batch adsorption studies, it was observed that the experimental data fit well with Langmuir adsorption isotherm in comparison to Freundlich isotherm. The monolayer adsorption capacity (Qa0) of OPF MCC was found to be around 51.811mgg-1 and the experimental data fitted well to pseudo-second-order kinetic model.


Subject(s)
Cellulose/chemistry , Methylene Blue/chemistry , Models, Chemical , Poaceae/chemistry , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...