Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 143: 107094, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199139

ABSTRACT

Microtubule dynamics are critical for spindle assembly and chromosome segregation during cell division. Pharmacological inhibition of microtubule dynamics in cells causes prolonged mitotic arrest, resulting in apoptosis, an approach extensively employed in treating different types of cancers. The present study reports the synthesis of thirty-two novel bis-amides (SSE1901-SSE1932) and the evaluation of their antiproliferative activities. N-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)benzamide (SSE1917) exhibited the most potent activity with GI50 values of 0.331 ± 0.01 µM in HCT116 colorectal and 0.48 ± 0.27 µM in BT-549 breast cancer cells. SSE1917 stabilized microtubules in biochemical and cellular assays, bound to taxol site in docking studies, and caused aberrant mitosis and G2/M arrest in cells. Prolonged treatment of cells with the compound increased p53 expression and triggered apoptotic cell death. Furthermore, SSE1917 suppressed the growth of both mouse and patient-derived human colon cancer organoids, highlighting its potential therapeutic value as an anticancer agent.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Tubulin , Animals , Humans , Mice , Amides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Microtubules/metabolism , Mitosis , Tubulin/drug effects , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
2.
ACS Med Chem Lett ; 14(10): 1369-1377, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37849542

ABSTRACT

Microtubules are dynamic structures that form spindle fibers during cell division; pharmacological inhibition of microtubule dynamics arrests cells in mitosis, leading to apoptosis, and they have been extensively used to treat various cancers. However, the efficacy of such drugs is often limited by multidrug resistance. This study synthesized and evaluated 30 novel derivatives of podophyllotoxin, a natural antimitotic compound, for their antiproliferative activities. Compound SSE1806 exhibited the most potent antiproliferative activity with GI50 values ranging from 1.29 ± 0.01 to 21.15 ± 2.1 µM in cancer cell lines of different origins; it directly inhibited microtubule polymerization, causing aberrant mitosis and G2/M arrest. Prolonged treatment with SSE1806 increased p53 expression, induced cell death in monolayer cultures, and reduced the growth of mouse- and patient-derived human colon cancer organoids. Importantly, SSE1806 overcame multidrug resistance in a cell line overexpressing MDR-1. Thus, SSE1806 represents a potential anticancer agent that can overcome multidrug resistance.

3.
Nat Commun ; 13(1): 2791, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589755

ABSTRACT

Tumour cell plasticity is a major barrier to the efficacy of targeted cancer therapies but the mechanisms that mediate it are poorly understood. Here, we identify dysregulated RNA splicing as a key driver of tumour cell dedifferentiation in colorectal cancer (CRC). We find that Apc-deficient CRC cells have dysregulated RNA splicing machinery and exhibit global rewiring of RNA splicing. We show that the splicing factor SRSF1 controls the plasticity of tumour cells by controlling Kras splicing and is required for CRC invasion in a mouse model of carcinogenesis. SRSF1 expression maintains stemness in human CRC organoids and correlates with cancer stem cell marker expression in human tumours. Crucially, partial genetic downregulation of Srsf1 does not detrimentally affect normal tissue homeostasis, demonstrating that tumour cell plasticity can be differentially targeted. Thus, our findings link dysregulation of the RNA splicing machinery and control of tumour cell plasticity.


Subject(s)
Cell Plasticity , Colorectal Neoplasms , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Plasticity/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Mice , RNA Splicing/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
4.
Nat Commun ; 12(1): 2335, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879799

ABSTRACT

Current therapeutic options for treating colorectal cancer have little clinical efficacy and acquired resistance during treatment is common, even following patient stratification. Understanding the mechanisms that promote therapy resistance may lead to the development of novel therapeutic options that complement existing treatments and improve patient outcome. Here, we identify RAC1B as an important mediator of colorectal tumourigenesis and a potential target for enhancing the efficacy of EGFR inhibitor treatment. We find that high RAC1B expression in human colorectal cancer is associated with aggressive disease and poor prognosis and deletion of Rac1b in a mouse colorectal cancer model reduces tumourigenesis. We demonstrate that RAC1B interacts with, and is required for efficient activation of the EGFR signalling pathway. Moreover, RAC1B inhibition sensitises cetuximab resistant human tumour organoids to the effects of EGFR inhibition, outlining a potential therapeutic target for improving the clinical efficacy of EGFR inhibitors in colorectal cancer.


Subject(s)
Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Carcinogenesis , Cell Line, Tumor , Cetuximab/pharmacology , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptides/deficiency , Neuropeptides/genetics , Neuropeptides/metabolism , Signal Transduction , Up-Regulation , Wnt Signaling Pathway , rac1 GTP-Binding Protein/deficiency , rac1 GTP-Binding Protein/genetics
5.
Org Biomol Chem ; 18(48): 9816-9825, 2020 12 28.
Article in English | MEDLINE | ID: mdl-33290484

ABSTRACT

The Class F G protein-coupled receptors (GPCRs) include Smoothened and the ten Frizzled receptors, which are major cell membrane receptors in the Hedgehog and Wnt signalling pathways respectively and of enormous interest in embryonic development and as therapeutic targets in cancer. Recent crystal structures of Smoothened provide the opportunity to investigate the structural biology of Class F GPCRs in more detail, in turn, informing the development of therapeutics. A key question in this area is how one receptor may trigger distinct pathways - particularly relevant for Wnt signalling, in which signals may be transduced from a Frizzled via Dishevelled or G proteins, depending on the context. In this study, we employ adiabatic biased molecular dynamics and umbrella sampling to investigate the activation of Smoothened and Frizzled-7 in both the native state and bound to endogenous ligands, as well as how the clinically used Smoothened antagonist vismodegib alters this signalling. The results highlight key energetic barriers in the activation of these receptors, and the molecular features of the receptors mediating these barriers, demonstrating our approach as a robust means of investigating signalling through these receptors.


Subject(s)
Receptors, G-Protein-Coupled
6.
Biochem Soc Trans ; 48(4): 1765-1780, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32725184

ABSTRACT

The Wnt signalling pathways are of great importance in embryonic development and oncogenesis. Canonical and non-canonical Wnt signalling pathways are known, with the canonical (or ß-catenin dependent) pathway being perhaps the best studied of these. While structural knowledge of proteins and interactions involved in canonical Wnt signalling has accumulated over the past 20 years, the pace of discovery has increased in recent years, with the structures of several key proteins and assemblies in the pathway being released. In this review, we provide a brief overview of canonical Wnt signalling, followed by a comprehensive overview of currently available X-ray, NMR and cryoEM data elaborating the structures of proteins and interactions involved in canonical Wnt signalling. While the volume of structures available is considerable, numerous gaps in knowledge remain, particularly a comprehensive understanding of the assembly of large multiprotein complexes mediating key aspects of pathway, as well as understanding the structure and activation of membrane receptors in the pathway. Nonetheless, the presently available data affords considerable opportunities for structure-based drug design efforts targeting canonical Wnt signalling.


Subject(s)
Wnt Signaling Pathway , Animals , Cell Nucleus/metabolism , Drug Design , Humans , Protein Conformation , Receptors, Cell Surface/metabolism , Wnt Proteins/chemistry , Wnt Proteins/metabolism
7.
Int J Mol Sci ; 20(17)2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31454915

ABSTRACT

Several proteins other than the frizzled receptors (Fzd) and the secreted Frizzled-related proteins (sFRP) contain Fzd-type cysteine-rich domains (CRD). We have termed these domains "putative Fzd-type CRDs", as the relevance of Wnt signalling in the majority of these is unknown; the RORs, an exception to this, are well known for mediating non-canonical Wnt signalling. In this study, we have predicted the likely binding affinity of all Wnts for all putative Fzd-type CRDs. We applied both our previously determined Wnt‒Fzd CRD binding affinity prediction model, as well as a newly devised model wherein the lipid term was forced to contribute favourably to the predicted binding energy. The results obtained from our new model indicate that certain putative Fzd CRDs are much more likely to bind Wnts, in some cases exhibiting selectivity for specific Wnts. The results of this study inform the investigation of Wnt signalling modulation beyond Fzds and sFRPs.


Subject(s)
Cysteine , Frizzled Receptors/chemistry , Frizzled Receptors/metabolism , Protein Interaction Domains and Motifs , Wnt Proteins/metabolism , Cysteine/chemistry , Humans , Models, Molecular , Protein Binding , Protein Multimerization , Signal Transduction
8.
Redox Biol ; 25: 101060, 2019 07.
Article in English | MEDLINE | ID: mdl-30578123

ABSTRACT

Heat shock proteins (HSPs) are a large family of ubiquitously expressed proteins with diverse functions, including protein assembly and folding/unfolding. These proteins have been associated with the progression of various gastrointestinal tumours. Dysregulation of cellular redox has also been associated with gastrointestinal carcinogenesis, however, a link between HSPs and dysregulation of cellular redox in carcinogenesis remains unclear. In this study, we analysed mRNA co-expression and methylation patterns, as well as performed survival analysis and gene set enrichment analysis, on gastrointestinal cancer data sets (oesophageal, stomach and colorectal carcinomas) to determine whether HSP activity and cellular redox dysregulation are linked. A widespread relationship between HSPs and cellular redox was identified, with specific combinatorial co-expression patterns demonstrated to significantly alter patient survival outcomes. This comprehensive analysis provides the foundation for future studies aimed at deciphering the mechanisms of cooperativity between HSPs and redox regulatory enzymes, which may be a target for future therapeutic intervention for gastrointestinal tumours.


Subject(s)
Biomarkers, Tumor/genetics , Gastrointestinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Heat-Shock Proteins/genetics , Biomarkers, Tumor/metabolism , DNA Methylation/genetics , Gastrointestinal Neoplasms/pathology , Heat-Shock Proteins/metabolism , Humans , Neoplasm Staging , Oxidation-Reduction , Prognosis , Survival Analysis
9.
Antioxid Redox Signal ; 29(13): 1215-1236, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29304561

ABSTRACT

SIGNIFICANCE: B cell lymphoma-2 (Bcl-2) was discovered over three decades ago and is the prototype antiapoptotic member of the Bcl-2 family that comprises proteins with contrasting effects on cell fate. First identified as a consequence of chromosomal translocation (t 14:18) in human lymphoma, subsequent studies have revealed mutations and/or gene copy number alterations as well as post-translational modifications of Bcl-2 in a variety of human cancers. The canonical function of Bcl-2 is linked to its ability to inhibit mitochondrial membrane permeabilization, thereby regulating apoptosome assembly and activation by blocking the cytosolic translocation of death amplification factors. Of note, the identification of specific domains within the Bcl-2 family of proteins (Bcl-2 homology domains; BH domains) has not only provided a mechanistic insight into the various interactions between the member proteins but has also been the impetus behind the design and development of small molecule inhibitors and BH3 mimetics for clinical use. Recent Advances: Aside from its role in maintaining mitochondrial integrity, recent evidence provides testimony to a novel facet in the biology of Bcl-2 that involves an intricate cross talk with cellular redox state. Bcl-2 overexpression modulates mitochondrial redox metabolism to create a "pro-oxidant" milieu, conducive for cell survival. However, under states of oxidative stress, overexpression of Bcl-2 functions as a redox sink to prevent excessive buildup of reactive oxygen species, thereby inhibiting execution signals. Emerging evidence indicates various redox-dependent transcriptional changes and post-translational modifications with different functional outcomes. CRITICAL ISSUES: Understanding the complex interplay between Bcl-2 and the cellular redox milieu from the standpoint of cell fate signaling remains vital for a better understanding of pathological states associated with altered redox metabolism and/or aberrant Bcl-2 expression. FUTURE DIRECTIONS: Based on its canonical functions, Bcl-2 has emerged as a potential druggable target. Small molecule inhibitors of Bcl-2 and/or other family members with similar function, as well as BH3 mimetics, are showing promise in the clinic. The emerging evidence for the noncanonical activity linked to cellular redox metabolism provides a novel avenue for the design and development of diagnostic and therapeutic strategies against cancers refractory to conventional chemotherapy by the overexpression of this prosurvival protein.


Subject(s)
Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Oxidation-Reduction/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
10.
J Biol Chem ; 292(27): 11218-11229, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28533339

ABSTRACT

Wnt signaling pathways are of significant interest in development and oncogenesis. The first step in these pathways typically involves the binding of a Wnt protein to the cysteine-rich domain (CRD) of a Frizzled receptor. Wnt-Frizzled interactions can be antagonized by secreted Frizzled-related proteins (SFRPs), which also contain a Frizzled-like CRD. The large number of Wnts, Frizzleds, and SFRPs, as well as the hydrophobic nature of Wnt, poses challenges to laboratory-based investigations of interactions involving Wnt. Here, utilizing structural knowledge of a representative Wnt-Frizzled CRD interaction, as well as experimentally determined binding affinities for a selection of Wnt-Frizzled CRD interactions, we generated homology models of Wnt-Frizzled CRD interactions and developed a quantitative structure-activity relationship for predicting their binding affinities. The derived model incorporates a small selection of terms derived from scoring functions used in protein-protein docking, as well as an energetic term considering the contribution made by the lipid of Wnt to the Wnt-Frizzled binding affinity. Validation with an external test set suggests that the model can accurately predict binding affinity for 75% of cases and that the error associated with the predictions is comparable with the experimental error. The model was applied to predict the binding affinities of the full range of mouse and human Wnt-Frizzled and Wnt-SFRP interactions, indicating trends in Wnt binding affinity for Frizzled and SFRP CRDs. The comprehensive predictions made in this study provide the basis for laboratory-based studies of previously unexplored Wnt-Frizzled and Wnt-SFRP interactions, which, in turn, may reveal further Wnt signaling pathways.


Subject(s)
Frizzled Receptors , Molecular Docking Simulation , Wnt Proteins , Wnt Signaling Pathway/physiology , Animals , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Humans , Protein Binding , Protein Domains , Wnt Proteins/chemistry , Wnt Proteins/genetics , Wnt Proteins/metabolism
11.
Clin Biochem Rev ; 38(3): 131-142, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29332977

ABSTRACT

Angiogenesis is a normal biological process wherein new blood vessels form from the growth of pre-existing blood vessels. Preventing angiogenesis in solid tumours by targeting pro-angiogenic factors including vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), basic fibroblast growth factor (bFGF), hepatocyte growth factor, and platelet-derived growth factor (PDGF) is currently under investigation for cancer treatment. Concurrently targeting the cell signalling pathways involved in the transcriptional and post-translational regulation of these factors may provide positive therapeutic results. One such pathway is the Wnt signalling pathway. Wnt was first discovered in mice infected with mouse mammary tumour virus, and has been crucial in improving our understanding of oncogenesis and development. In this review, we summarise molecular and cellular aspects of the importance of Wnt signalling to angiogenesis, including ß-catenin-dependent mechanisms of angiogenic promotion, as well as the study of Wnt antagonists, such as the secreted frizzled-related protein family (SFRPs) which have been shown to inhibit angiogenesis. The growing understanding of the underlying complexity of the biochemical pathways mediating angiogenesis is critical to the identification of new molecular targets for therapeutic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...