Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 16(10): e1008868, 2020 10.
Article in English | MEDLINE | ID: mdl-33048992

ABSTRACT

While antiretroviral therapy (ART) has effectively revolutionized HIV care, the virus is never fully eliminated. Instead, immune dysfunction, driven by persistent non-specific immune activation, ensues and progressively leads to premature immunologic aging. Current biomarkers monitoring immunologic changes encompass generic inflammatory biomarkers, that may also change with other infections or disease states, precluding the antigen-specific monitoring of HIV-infection associated changes in disease. Given our growing appreciation of the significant changes in qualitative and quantitative properties of disease-specific antibodies in HIV infection, we used a systems approach to explore humoral profiles associated with HIV control. We found that HIV-specific antibody profiles diverge by spontaneous control of HIV, treatment status, viral load and reservoir size. Specifically, HIV-specific antibody profiles representative of changes in viral load were largely quantitative, reflected by differential HIV-specific antibody levels and Fc-receptor binding. Conversely, HIV-specific antibody features that tracked with reservoir size exhibited a combination of quantitative and qualitative changes marked by more distinct subclass selection profiles and unique HIV-specific Fc-glycans. Our analyses suggest that HIV-specific antibody Fc-profiles provide antigen-specific resolution on both cell free and cell-associated viral loads, pointing to potentially novel biomarkers to monitor reservoir activity.


Subject(s)
Biomarkers/blood , HIV Antibodies/blood , HIV Infections/blood , HIV-1/immunology , Viral Load/immunology , Virus Latency/immunology , Virus Replication , Anti-Retroviral Agents/therapeutic use , HIV Antibodies/immunology , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , Humans , Viral Load/drug effects , Virus Latency/drug effects
2.
ACS Med Chem Lett ; 11(4): 506-513, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32292557

ABSTRACT

Spleen tyrosine kinase (SYK) is a critical regulator of signaling in a variety of immune cell types such as B-cells, monocytes, and macrophages. Accordingly, there have been numerous efforts to identify compounds that selectively inhibit SYK as a means to treat autoimmune and inflammatory diseases. We previously disclosed GS-9973 (entospletinib) as a selective SYK inhibitor that is under clinical evaluation in hematological malignancies. However, a BID dosing regimen and drug interaction with proton pump inhibitors (PPI) prevented development of entospletinib in inflammatory diseases. Herein, we report the discovery of a second-generation SYK inhibitor, GS-9876 (lanraplenib), which has human pharmacokinetic properties suitable for once-daily administration and is devoid of any interactions with PPI. Lanraplenib is currently under clinical evaluation in multiple autoimmune indications.

3.
Mol Microbiol ; 89(6): 1099-120, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23859153

ABSTRACT

In most bacterial cells, cell division is dependent on the polymerization of the FtsZ protein to form a ring-like structure (Z-ring) at the midcell. Despite its essential role, the molecular architecture of the Z-ring remains elusive. In this work we examine the roles of two FtsZ-associated proteins, ZapA and ZapB, in the assembly dynamics and structure of the Z-ring in Escherichia coli cells. In cells deleted of zapA or zapB, we observed abnormal septa and highly dynamic FtsZ structures. While details of these FtsZ structures are difficult to discern under conventional fluorescence microscopy, single-molecule-based super-resolution imaging method Photoactivated Localization Microscopy (PALM) reveals that these FtsZ structures arise from disordered arrangements of FtsZ clusters. Quantitative analysis finds these clusters are larger and comprise more molecules than a single FtsZ protofilament, and likely represent a distinct polymeric species that is inherent to the assembly pathway of the Z-ring. Furthermore, we find these clusters are not due to the loss of ZapB-MatP interaction in ΔzapA and ΔzapB cells. Our results suggest that the main function of ZapA and ZapB in vivo may not be to promote the association of individual protofilaments but to align FtsZ clusters that consist of multiple FtsZ protofilaments.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Macromolecular Substances/metabolism , Microscopy/methods , Protein Multimerization , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...