Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Process Res Dev ; 28(5): 1860-1868, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38783850

ABSTRACT

The use of sustainable oxidants is of great interest to the chemical industry, considering the importance of oxidation reactions for the manufacturing of chemicals and society's growing awareness of its environmental impact. Molecular oxygen (O2), with an almost optimal atom efficiency in oxidation reactions, presents one of the most attractive alternatives to common reagents that are not only toxic in most cases but produce stoichiometric amounts of waste that must be treated. However, fire and explosion safety concerns, especially when used in combination with organic solvents, restrict its easy use. Here, we use state-of-the-art 3D printing and experimental feedback to develop a miniature continuous stirred-tank reactor (mini-CSTR) that enables efficient use of O2 as an oxidant in organic chemistry. Outstanding heat dissipation properties, achieved through integrated jacket cooling and a high surface-to-volume ratio, allow for a safe operation of the exothermic oxidation of 2-ethylhexanal, surpassing previously reported product selectivity. Moving well beyond the proof-of-concept stage, we characterize and illustrate the reactor's potential in the gas-liquid-solid triphasic synthesis of an endoperoxide precursor of antileishmanial agents. The custom-designed magnetic overhead stirring unit provides improved stirring efficiency, facilitating the handling of suspensions and, in combination with the borosilicate gas dispersion plate, leading to an optimized gas-liquid interface. These results underscore the immense potential that lies within the use of mini-CSTR in sustainable chemistry.

2.
Chimia (Aarau) ; 77(3): 127-131, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-38047815

ABSTRACT

Scaling up syntheses from mg to kg quantities is a complex endeavor. Besides adapting laboratory protocols to industrial processes and equipment and thorough safety assessments, much attention is paid to the reduction of the process' environmental impact. For processes including transition metal catalyzed steps, e.g. cross-coupling chemistry, this impact strongly depends on the identity of the metal used. As such, a key approach is the replacement of single-use with reusable heterogeneous catalysts. Transition metal single-atom heterogeneous catalysts (SAC), a novel class of catalytic materials, might exhibit all the necessary properties to step up to this task. This article shall discuss current applications of SAC in cross-coupling chemistry from the point of a process chemist and shed light on the NCCR Catalysis contribution to the field. Investigations of the stability-activity-selectivity relationship of SACs in combination with early-stage life-cycle assessments (LCA) of potential processes lay the foundation for large-scale application tailored catalyst synthesis. Ultimately, prevailing challenges are highlighted, which need to be addressed in future research.

3.
ACS Sustain Chem Eng ; 11(48): 16935-16945, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38076617

ABSTRACT

Single-atom heterogeneous catalysts (SACs) attract growing interest in their application in green chemistry and organic synthesis due to their potential for achieving atomic-level precision. These catalysts offer the possibility of achieving selectivity comparable to the traditionally applied organometallic complexes, while enhancing metal utilization and recovery. However, an understanding of SAC performance in organic reactions remains limited to model substrates, and their application as drop-in solutions may not yield optimal activity. Here, we investigate the previously unaddressed influence of the reaction environment, including solvent, base, cocatalyst, and ligand, on the performance of a palladium SAC in Sonogashira-Hagihara cross-couplings. By examining the effects of different solvents using the established criteria, we find that the behavior of the SAC deviates from trends observed with homogeneous catalysts, indicating a distinct interplay between heterogeneous systems and the reaction environment. Our results illustrate the satisfactory performance of SACs in cross-couplings of aryl iodides and acetylenes with electron-withdrawing and -donating groups, while the use of bromides and chlorides remains challenging. Extending the proof-of-concept stage to multigram scale, we demonstrate the synthesis of an intermediate of the anticancer drug Erlotinib. The catalyst exhibits high stability, allowing for multiple reuses, even under noninert conditions. Life-cycle assessment guides the upscaling of the catalyst preparation and quantifies the potential environmental and financial benefits of using the SAC, while also revealing the negligible impact of the PPh3 ligand and CuI cocatalyst. Our results underscore the significant potential of SACs to revolutionize sustainable organic chemistry and highlight the need for further understanding the distinct interplay between their performance and the reaction environment.

4.
Chemistry ; 27(11): 3793-3798, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33284497

ABSTRACT

The reactivity of the geminal frustrated Lewis pair (FLP) (F5 C2 )3 SnCH2 P(tBu)2 (1) was explored by reacting it with a variety of small molecules (PhOCN, PhNCS, PhCCH, tBuCCH, H3 CC(O)CH=CH2 , Ph[C(O)]2 Ph, PhN=NPh and Me3 SiCHN2 ), featuring polar or non-polar multiple bonds and/or represent α,ß-unsaturated systems. While most adducts are formed readily, the binding of azobenzene requires UV-induced photoisomerization, which results in the highly selective complexation of cis-azobenzene. In the case of benzil, the reaction does not lead to the expected 1,2- or 1,4-addition products, but to the non-stereoselective (tBu)2 PCH2 -transfer to a prochiral keto function of benzil. All adducts of 1 were characterised by means of multinuclear NMR spectroscopy, elemental analyses and X-ray diffraction experiments.

5.
Angew Chem Int Ed Engl ; 59(40): 17388-17392, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32558235

ABSTRACT

The geminal frustrated Lewis pair (F5 C2 )3 SnCH2 P(tBu)2 (1) reacted with N-sulfinylaniline PhNSO to afford the first sulfur monoxide adduct of a main group metal, (F5 C2 )3 SnCH2 P(tBu)2 ⋅SO (2), which contains a SnCPSO ring. The second product is a phenylnitrene adduct of 1. The surprising stability of 2 was compared with the stabilities of the so far inaccessible O2 and S2 adducts of 1. Attempts to prepare these from 1 and the elemental chalcogens (O2 , S8 , Se∞ , Te∞ ) led to four-membered SnCPE ring systems. Quantum-chemical investigations of 2 demonstrate the bond polarity of the SO unit to stabilize 2.

SELECTION OF CITATIONS
SEARCH DETAIL
...